Suppr超能文献

尼日利亚民众对精神疾病成因的看法:模式与关联因素

Lay beliefs regarding causes of mental illness in Nigeria: pattern and correlates.

作者信息

Adewuya Abiodun O, Makanjuola Roger O A

机构信息

Department of Psychiatry, College of Medicine, Lagos State University, PMB 21266 Ikeja, Lagos, Nigeria.

出版信息

Soc Psychiatry Psychiatr Epidemiol. 2008 Apr;43(4):336-41. doi: 10.1007/s00127-007-0305-x. Epub 2008 Feb 13.

Abstract

BACKGROUND

Although studies have shown that views about causation are strongly associated with stigmatising attitudes to mental illness, none have examined the correlates of such causal views in order to identify the population needed to be targeted for education.

OBJECTIVES

To evaluate the pattern and correlates of lay beliefs regarding the causes of mental illness in south-western Nigeria.

METHOD

A cross-sectional survey in which respondents (n = 2,078) were administered questionnaire detailing sociodemographic variables and perceived causation of mental illness.

RESULTS

Beliefs in supernatural factors and the misuse of psychoactive substances were the most prevalent. While urban dwelling, higher educational status and familiarity with mental illness correlated with belief in biological and psychosicial causation, older age, rural dwelling, and lack of familiarity correlated with a belief in supernatural causation. Educational status had no effect on the belief in supernatural causation.

CONCLUSION

Anti-stigma programmes need to incorporate these factors in order to identify the population at risk, who will actually benefit from targeted education regarding the causes of mental illness.

摘要

背景

尽管研究表明对病因的看法与对精神疾病的污名化态度密切相关,但尚无研究探讨此类因果观点的相关因素,以便确定需要接受教育的目标人群。

目的

评估尼日利亚西南部民众对精神疾病病因的认知模式及相关因素。

方法

开展一项横断面调查,对2078名受访者进行问卷调查,详细了解其社会人口统计学变量以及对精神疾病病因的认知。

结果

超自然因素和精神活性物质滥用的观念最为普遍。居住在城市、较高的教育水平以及对精神疾病的熟悉程度与对生物和心理社会病因的认知相关,而年龄较大、居住在农村以及不熟悉则与超自然病因的认知相关。教育水平对超自然病因的认知没有影响。

结论

反污名化项目需要纳入这些因素,以确定有风险的人群,这些人群实际上将受益于针对精神疾病病因的定向教育。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验