Suppr超能文献

基于边界函数的变分图像分割。

Variational image segmentation using boundary functions.

机构信息

Naval Air Warfare Center, China Lake, CA 93555, USA.

出版信息

IEEE Trans Image Process. 1998;7(9):1269-82. doi: 10.1109/83.709660.

Abstract

A general variational framework for image approximation and segmentation is introduced. By using a continuous "line-process" to represent edge boundaries, it is possible to formulate a variational theory of image segmentation and approximation in which the boundary function has a simple explicit form in terms of the approximation function. At the same time, this variational framework is general enough to include the most commonly used objective functions. Application is made to Mumford-Shah type functionals as well as those considered by Geman and others. Employing arbitrary Lp norms to measure smoothness and approximation allows the user to alternate between a least squares approach and one based on total variation, depending on the needs of a particular image. Since the optimal boundary function that minimizes the associated objective functional for a given approximation function can be found explicitly, the objective functional can be expressed in a reduced form that depends only on the approximating function. From this a partial differential equation (PDE) descent method, aimed at minimizing the objective functional, is derived. The method is fast and produces excellent results as illustrated by a number of real and synthetic image problems.

摘要

介绍了一种用于图像逼近和分割的通用变分框架。通过使用连续的“线过程”来表示边缘边界,可以在其中边界函数具有简单显式形式的情况下构建图像分割和逼近的变分理论。同时,这个变分框架足够通用,可以包含最常用的目标函数。应用于 Mumford-Shah 泛函以及 Geman 等人考虑的那些泛函。使用任意的 Lp 范数来测量平滑度和逼近度,允许用户根据特定图像的需要在最小二乘方法和基于全变差的方法之间进行切换。由于可以显式找到最小化给定逼近函数的相关目标泛函的最优边界函数,因此可以将目标泛函表示为仅依赖于逼近函数的简化形式。由此得出一种针对最小化目标泛函的偏微分方程 (PDE) 下降方法。该方法速度快,效果出色,通过许多真实和合成图像问题得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验