Lim Leong Chew, Rajan Kotam Kalidindi, Jin Jing
Ministry of Education, Singapore, and National University of Singapore, Singapore 119260.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Dec;54(12):2474-8. doi: 10.1109/TUFFC.2007.562.
Relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))O(3-x)PbTiO(3) (PZN-PT) and Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3)(PMN-PT) single crystals are the potential candidates for future high-performance piezoelectric devices due to their exceptionally high dielectric and piezoelectric properties. Characterization on flux-grown PZN-PT single crystals of different orientations revealed that PZN-(6-7)%PT single crystals show good homogeneity in dielectric and electromechanical properties and composition. When poled in [001] direction, these crystals exhibit high longitudinal-mode properties with dielectric constant (K(T)) approximately equal to 7000, piezoelectric coefficients (d(33)) approximately equal to 2800 pC/N, and electromechanical coupling factors (k(33)) > or = 0.92. For [011]-cut crystals, optimally poled PZN-7%PT single crystal exhibits very high transverse-mode dielectric and piezoelectric properties with K(T) > or = 5000, d(32) approximately equal to -3800 pC/N and k(32) > or = 0.90. [011]- poled PZN 6%PT has d(32) approximately equal to -3000 pC/N and comparable k(32) and K(T) values. In comparison with melt-grown PMNPT single crystals, flux-grown PZN-PT single crystals show good compositional homogeneity, superior and consistent dielectric and electromechanical properties, and higher depolarization temperatures (TDP).
弛豫铁电体Pb(Zn(1/3)Nb(2/3))O(3 - x)PbTiO(3)(PZN - PT)和Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3)(PMN - PT)单晶因其极高的介电和压电性能,是未来高性能压电器件的潜在候选材料。对不同取向的熔盐法生长的PZN - PT单晶进行表征发现,PZN-(6 - 7)%PT单晶在介电、机电性能和成分方面表现出良好的均匀性。当沿[001]方向极化时,这些晶体表现出高纵向模式性能,介电常数(K(T))约为7000,压电系数(d(33))约为2800 pC/N,机电耦合因子(k(33))≥0.92。对于[011]切割的晶体,最佳极化的PZN - 7%PT单晶表现出非常高的横向模式介电和压电性能,K(T)≥5000,d(32)约为 - 3800 pC/N,k(32)≥0.90。[011]极化的PZN 6%PT的d(32)约为 - 3000 pC/N,k(32)和K(T)值相当。与熔盐法生长的PMNPT单晶相比,熔盐法生长的PZN - PT单晶表现出良好的成分均匀性、优异且一致的介电和机电性能以及更高的去极化温度(TDP)。