Suppr超能文献

具有非均匀膜的双电极电容式微机电超声换能器,用于高机电耦合系数和高带宽操作。

Dual-electrode CMUT with non-uniform membranes for high electromechanical coupling coefficient and high bandwidth operation.

作者信息

Guldiken Rasim O, Zahorian Jaime, Yamaner F Y, Degertekin F Levent

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jun;56(6):1270-6. doi: 10.1109/TUFFC.2009.1169.

Abstract

In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k(2)) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane.

摘要

在本文中,我们报告了双电极电容式微机械超声换能器(CMUT)的测量结果,该换能器在90%的崩溃电压下机电耦合系数(k(2))为0.82,并且在8 MHz设计频率附近的换能器表面处具有136%的3 dB单向分数带宽。这些结果在有限元模拟预测值的5%以内。大带宽主要是通过使用非均匀薄膜、在设计中引入中心质量来实现的,而双电极结构在较大的直流偏置范围内提供了高耦合系数,且不会使薄膜崩溃。此外,与具有均匀薄膜的双电极CMUT相比,非均匀薄膜结构使双电极CMUT的发射灵敏度提高了约2 dB。

相似文献

1
Dual-electrode CMUT with non-uniform membranes for high electromechanical coupling coefficient and high bandwidth operation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jun;56(6):1270-6. doi: 10.1109/TUFFC.2009.1169.
2
CMUTS with dual-electrode structure for improved transmit and receive performance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):483-91. doi: 10.1109/tuffc.2006.1593388.
4
Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Apr;50(4):449-56. doi: 10.1109/tuffc.2003.1197968.
5
Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Dec;56(12):2733-43. doi: 10.1109/TUFFC.2009.1364.
6
FEA modeling of CMUT with membrane stand-off structures to enable selectable frequency-mode operation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12):2749-52. doi: 10.1109/TUFFC.2011.2138.
7
Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations.
Ultrasonics. 2009 Dec;49(8):765-73. doi: 10.1016/j.ultras.2009.06.003. Epub 2009 Jul 2.
8
Parametric linear modeling of circular cMUT membranes in vacuum.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Jun;54(6):1229-39. doi: 10.1109/tuffc.2007.376.
9
Dynamic analysis of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2270-5. doi: 10.1109/tuffc.2005.1563269.
10
A finite difference model for cMUT devices.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2199-210. doi: 10.1109/tuffc.2005.1563263.

引用本文的文献

2
Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements.
Microsyst Nanoeng. 2022 Jun 2;8:59. doi: 10.1038/s41378-022-00392-0. eCollection 2022.
4
A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2318-2330. doi: 10.1109/TUFFC.2022.3172566. Epub 2022 Jun 30.
5
Frequency-Dependent Spatial Coherence in Conventional and Chirp Transmissions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1707-1720. doi: 10.1109/TUFFC.2021.3050120. Epub 2021 Apr 26.
6
MEMS Ultrasound Transducers for Endoscopic Photoacoustic Imaging Applications.
Micromachines (Basel). 2020 Oct 12;11(10):928. doi: 10.3390/mi11100928.
7
Experimental Characterization of an Embossed Capacitive Micromachined Ultrasonic Transducer Cell.
Micromachines (Basel). 2020 Feb 20;11(2):217. doi: 10.3390/mi11020217.
8
Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging.
Microsyst Nanoeng. 2018 Aug 27;4:19. doi: 10.1038/s41378-018-0022-5. eCollection 2018.
10
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Dec;61(12):2121-31. doi: 10.1109/TUFFC.2014.006481.

本文引用的文献

2
Characterization of flux-grown PZN-PT single crystals for high-performance piezo devices.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Dec;54(12):2474-8. doi: 10.1109/TUFFC.2007.562.
3
CMUTS with dual-electrode structure for improved transmit and receive performance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):483-91. doi: 10.1109/tuffc.2006.1593388.
4
Optimization of the gain-bandwidth product of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2211-9. doi: 10.1109/tuffc.2005.1563264.
5
Linear and nonlinear equivalent circuit modeling of CMUTs.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2163-72. doi: 10.1109/tuffc.2005.1563260.
6
Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Apr;50(4):449-56. doi: 10.1109/tuffc.2003.1197968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验