Barroso Madalena Martins Sant'ana, Freire Elisabete, Limaverde Gabriel S C S, Rocha Gustavo Miranda, Batista Evander J O, Weissmüller Gilberto, Andrade Leonardo Rodrigues, Coelho-Sampaio Tatiana
Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
J Biol Chem. 2008 Apr 25;283(17):11714-20. doi: 10.1074/jbc.M709301200. Epub 2008 Feb 13.
Natural laminin matrices are formed on cell membranes by a cooperative process involving laminin self-polymerization and binding to cognate cellular receptors. In a cell-free system, laminin can self-polymerize, given that a minimal critical concentration is achieved. We have previously described that pH acidification renders self-polymerization independent of protein concentration. Here we studied the ultrastructure of acid-induced laminin polymers using electron and atomic force microscopies. Polymers presented the overall appearance of natural matrices and could be described as homogeneous polygonal sheets, presenting struts of 21 +/- 5 and 86 +/- 3 nm of height, which approximately correspond to the sizes of the short and the long arms of the molecule, respectively. The addition of fragment E3 (the distal two domains of the long arm) did not affect the polymerization in solution nor the formation of adsorbed matrices. On the other hand, the addition of fragment E1', which contains two intact short arms, completely disrupted polymerization. These results indicate that acid-induced polymers, like natural ones, involve only interactions between the short arms. The electrostatic surface map of laminin alpha1 LG4-5 shows that acidification renders the distal end in the long arms exclusively positive, precluding homophylic interactions between them. Therefore, acidification reproduces in vitro, and at a physiological protein concentration, what receptor interaction does in the cellular context, namely, it prevents the long arm from disturbing formation of the homogeneous matrix involving the short arms only. We propose that acid-induced polymers are the best tool to study cellular response to laminin in the future.
天然层粘连蛋白基质通过层粘连蛋白自聚合以及与同源细胞受体结合的协同过程在细胞膜上形成。在无细胞系统中,只要达到最小临界浓度,层粘连蛋白就能自聚合。我们之前曾描述过,pH酸化使自聚合与蛋白质浓度无关。在此,我们使用电子显微镜和原子力显微镜研究了酸诱导的层粘连蛋白聚合物的超微结构。聚合物呈现出天然基质的整体外观,可被描述为均匀的多边形片层,有高度为21±5纳米和86±3纳米的支柱,分别大致对应于该分子短臂和长臂的大小。添加片段E3(长臂的远端两个结构域)既不影响溶液中的聚合,也不影响吸附基质的形成。另一方面,添加包含两个完整短臂的片段E1'则完全破坏了聚合。这些结果表明,酸诱导的聚合物与天然聚合物一样,仅涉及短臂之间的相互作用。层粘连蛋白α1 LG4 - 5的静电表面图谱显示,酸化使长臂的远端仅带正电,排除了它们之间的同型相互作用。因此,酸化在体外以生理蛋白质浓度重现了受体相互作用在细胞环境中的作用,即它防止长臂干扰仅涉及短臂的均匀基质的形成。我们提出,酸诱导的聚合物是未来研究细胞对层粘连蛋白反应的最佳工具。