Suppr超能文献

大肠杆菌趋化感受器阵列中两个激酶结构域的流动性随信号状态而变化。

The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state.

机构信息

California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA.

出版信息

Mol Microbiol. 2013 Sep;89(5):831-41. doi: 10.1111/mmi.12309. Epub 2013 Jul 30.

Abstract

Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signalling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favourable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signalling arrays in well-defined kinase activity states. The arrays were well ordered in all signalling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, the phosphorylation site domain and the binding domain for response regulator target proteins. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signalling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signalling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains.

摘要

运动细菌通过高度协作、有序排列的化学感受器感知其物理和化学环境。这些信号复合物将磷酸化反应调节蛋白,进而控制鞭毛马达反转,使细胞向有利的环境移动。将化学感受器结合转化为适当激酶输出的结构变化尚不清楚。在这里,我们应用高分辨率电子晶体断层扫描来可视化突变化学感受器信号阵列在明确定义的激酶活性状态下的情况。在所有信号状态下,阵列都排列整齐,在 2-3nm 分辨率下,受体构象没有明显差异。然而,我们在一个龙骨样密度中观察到了差异,我们将其鉴定为 CheA 激酶结构域 P1 和 P2、磷酸化位点结构域和反应调节蛋白靶蛋白的结合结构域。具有高激酶活性的突变受体阵列均表现出较小的龙骨和较高的蛋白水解易感性,表明 P1 和 P2 结构域具有可移动性。相比之下,在激酶失活信号状态下的阵列则表现出一系列龙骨大小。这些发现证实了化学感受器阵列在信号传递过程中不会发生大的结构变化,而是表明激酶活性至少部分受到关键结构域移动性的调节。

相似文献

1
The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state.
Mol Microbiol. 2013 Sep;89(5):831-41. doi: 10.1111/mmi.12309. Epub 2013 Jul 30.
3
Flexible Hinges in Bacterial Chemoreceptors.
J Bacteriol. 2018 Feb 7;200(5). doi: 10.1128/JB.00593-17. Print 2018 Mar 1.
4
Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update.
Trends Microbiol. 2015 May;23(5):257-66. doi: 10.1016/j.tim.2015.03.003. Epub 2015 Mar 30.
5
Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3777-81. doi: 10.1073/pnas.0610106104. Epub 2007 Feb 26.
6
Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response.
EMBO J. 2011 May 4;30(9):1719-29. doi: 10.1038/emboj.2011.77. Epub 2011 Mar 25.
7
New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography.
Biochemistry. 2014 Mar 18;53(10):1575-85. doi: 10.1021/bi5000614. Epub 2014 Mar 6.
8
Identification of a Kinase-Active CheA Conformation in Escherichia coli Chemoreceptor Signaling Complexes.
J Bacteriol. 2019 Nov 5;201(23). doi: 10.1128/JB.00543-19. Print 2019 Dec 1.
9
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1481-8. doi: 10.1073/pnas.1200781109. Epub 2012 May 3.

引用本文的文献

2
Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2218467120. doi: 10.1073/pnas.2218467120. Epub 2023 Jul 31.
3
Recent structural advances in bacterial chemotaxis signalling.
Curr Opin Struct Biol. 2023 Apr;79:102565. doi: 10.1016/j.sbi.2023.102565. Epub 2023 Mar 1.
4
Diethylpyrocarbonate-Based Covalent Labeling Mass Spectrometry of Protein Interactions in a Membrane Complex System.
J Am Soc Mass Spectrom. 2023 Jan 4;34(1):82-91. doi: 10.1021/jasms.2c00262. Epub 2022 Dec 7.
5
Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches.
Biochem Soc Trans. 2022 Dec 16;50(6):1595-1605. doi: 10.1042/BST20220191.
6
Interdomain Linkers Regulate Histidine Kinase Activity by Controlling Subunit Interactions.
Biochemistry. 2022 Dec 6;61(23):2672-2686. doi: 10.1021/acs.biochem.2c00326. Epub 2022 Nov 2.
7
Using Atomistic Simulations to Explore the Role of Methylation and ATP in Chemotaxis Signal Transduction.
ACS Omega. 2022 Aug 3;7(32):27886-27895. doi: 10.1021/acsomega.2c00792. eCollection 2022 Aug 16.
8
How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology.
J Struct Biol X. 2022 Feb 26;6:100065. doi: 10.1016/j.yjsbx.2022.100065. eCollection 2022.
9
Studying bacterial chemosensory array with CryoEM.
Biochem Soc Trans. 2021 Nov 1;49(5):2081-2089. doi: 10.1042/BST20210080.
10
Alternative Architecture of the Chemosensory Array.
Biomolecules. 2021 Mar 25;11(4):495. doi: 10.3390/biom11040495.

本文引用的文献

1
CheA-receptor interaction sites in bacterial chemotaxis.
J Mol Biol. 2012 Sep 14;422(2):282-90. doi: 10.1016/j.jmb.2012.05.023. Epub 2012 May 30.
2
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1481-8. doi: 10.1073/pnas.1200781109. Epub 2012 May 3.
3
Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3766-71. doi: 10.1073/pnas.1115719109. Epub 2012 Feb 21.
4
Electron tomography of cells.
Q Rev Biophys. 2012 Feb;45(1):27-56. doi: 10.1017/S0033583511000102. Epub 2011 Nov 15.
5
Activated chemoreceptor arrays remain intact and hexagonally packed.
Mol Microbiol. 2011 Nov;82(3):748-57. doi: 10.1111/j.1365-2958.2011.07854.x. Epub 2011 Oct 12.
6
Symmetry-restrained flexible fitting for symmetric EM maps.
Structure. 2011 Sep 7;19(9):1211-8. doi: 10.1016/j.str.2011.07.017.
7
Stereochemical errors and their implications for molecular dynamics simulations.
BMC Bioinformatics. 2011 May 23;12:190. doi: 10.1186/1471-2105-12-190.
8
Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response.
EMBO J. 2011 May 4;30(9):1719-29. doi: 10.1038/emboj.2011.77. Epub 2011 Mar 25.
9
Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor.
Mol Microbiol. 2011 May;80(3):596-611. doi: 10.1111/j.1365-2958.2011.07577.x. Epub 2011 Feb 24.
10
Fast tomographic reconstruction on multicore computers.
Bioinformatics. 2011 Feb 15;27(4):582-3. doi: 10.1093/bioinformatics/btq692. Epub 2010 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验