Zhang Rui, Newcomb Martin
Department of Chemistry, Western Kentucky University, 1106 College Heights Boulevard, Bowling Green, Kentucky 42101, USA.
Acc Chem Res. 2008 Mar;41(3):468-77. doi: 10.1021/ar700175k. Epub 2008 Feb 16.
High-valenttransition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 x 10(3) M(-1) s(-1) for a corrole-iron(V)-oxo species and 1.6 x 10(6) M(-1) s(-1) for the putative tetramesitylporphyrin-iron(V)-oxo perchlorate species. The latter rate constant is 25,000 times larger than that for oxidation of cis-cyclooctene by iron(IV)-oxo perchlorate tetramesitylporphyrin radical cation, which is the thermodynamically favored electronic isomer of the putative iron(V)-oxo species. The LFP-determined rate constants can be used to implicate the transient oxidants in catalytic reactions under turnover conditions where high-valent species are not observable. Similarly, the observed reactivities of the putative porphyrin-iron(V)-oxo species might explain the unusually high reactivity of oxidants produced in the cytochrome P450 enzymes, heme-thiolate enzymes that are capable of oxidizing unactivated carbon-hydrogen bonds in substrates so rapidly that iron-oxo intermediates have not been detected under physiological conditions.
高价过渡金属 - 氧物种是自然界和实验室中许多金属催化氧化反应中的活性氧化物种。在均相催化氧化中,过渡金属催化剂被牺牲性氧化剂氧化为金属 - 氧物种,而活化的过渡金属 - 氧中间体则氧化底物。对这些氧化物种的机理研究可以为理解具有商业重要性的催化氧化反应以及细胞色素P450酶中的氧化剂提供见解。然而,在许多情况下,过渡金属氧化剂反应性极强,以至于在混合时间为毫秒级的混合实验中它们不会积累到可检测的水平,成功生成并直接通过光谱表征这些高反应性瞬态仍然是一个巨大的挑战。我们理解均相催化中间体的策略是通过光化学方法生成瞬态物种,并在短至纳秒的时间尺度上进行光谱检测,同时通过激光闪光光解(LFP)方法对它们与底物的反应进行直接动力学研究。本综述介绍了对高价锰 - 氧和铁 - 氧中间体的研究。照射卟啉 - 锰(III)硝酸盐和氯酸盐或咕啉 - 锰(IV)氯酸盐会导致配体中O - X键的均裂,而照射卟啉 - 锰(III)高氯酸盐会导致O - Cl键的异裂,生成卟啉 - 锰(V) - 氧阳离子。咕啉和卟啉 - 铁(IV)配合物的类似反应产生了高反应性瞬态,初步鉴定为大环配体 - 铁(V) - 氧物种。动力学研究表明锰(V) - 氧物种具有高反应性,而推测的铁(V) - 氧瞬态具有更高的反应性。例如,在室温下,顺式环辛烯氧化反应的二级速率常数对于一种咕啉 - 铁(V) - 氧物种为6×10³ M⁻¹ s⁻¹,对于推测的四(对甲基苯基)卟啉 - 铁(V) - 高氯酸氧物种为1.6×10⁶ M⁻¹ s⁻¹。后一个速率常数比四(对甲基苯基)卟啉铁(IV) - 氧高氯酸自由基阳离子氧化顺式环辛烯的速率常数大25000倍,四(对甲基苯基)卟啉铁(IV) - 氧高氯酸自由基阳离子是推测的铁(V) - 氧物种的热力学有利电子异构体。LFP测定的速率常数可用于推断在周转条件下催化反应中的瞬态氧化剂,此时高价物种不可观测。同样,观察到的推测的卟啉 - 铁(V) - 氧物种的反应性可能解释了细胞色素P450酶中产生的氧化剂异常高的反应性,细胞色素P450酶是血红素 - 硫醇盐酶,能够如此迅速地氧化底物中未活化的碳 - 氢键,以至于在生理条件下尚未检测到铁 - 氧中间体。