Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, Zürich, Switzerland.
Nat Commun. 2021 Jul 5;12(1):4107. doi: 10.1038/s41467-021-24429-6.
The green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.
绿光吸收蛋白视紫红质(GPR)是细菌光驱动质子泵的原型。在这里,我们呈现了五聚体 GPR 的 2.9Å 冷冻电镜结构,解析了质子转移途径和寡聚界面的重要残基。与结构相近的 GPR 同源物的叠加和分子动力学模拟揭示了构象变化,这些变化调节了溶剂进入含有主要质子供体 E109 和拟议质子释放基团 E143 的内外半通道。我们提供了一种结构重排的机制,允许细胞内半通道水合,这是由 E109 的质子化状态变化触发的。对选定突变体的功能表征证明了围绕 E109 和 E143 的分子组织对于 GPR 活性的重要性。此外,我们提供的证据表明,参与稳定单体界面的螺旋作为促进其他螺旋运动的支架。与单体相比,五聚体的动力学更受限制,这些观察结果说明了 GPR 寡聚化以前证明的功能意义。总的来说,这项工作为蛋白视紫红质家族的结构、动态和功能提供了分子见解,将使大量将 GPR 作为模型蛋白的科学界受益。