Dept. of Electr. and Comput. Eng., California Univ., Irvine, CA.
IEEE Trans Image Process. 1996;5(4):635-45. doi: 10.1109/83.491339.
In this paper, we attack the problem of distinguishing textured images of real surfaces using small samples. We first analyze experimental data that results from applying ordinary conditional Markov fields. In the face of the disappointing performance of these models, we introduce a random field with spatial interaction that is itself a random variable (usually referred to as a random field in a random environment). For this class of models, we establish the power spectrum and the autocorrelation function as well-defined quantities, and we devise a scheme for the estimation of related parameters. The new set of features that resulted from this approach was applied to real images. Accurate discrimination was observed even for boxes of size 10x16.
在本文中,我们针对使用小样本区分真实表面纹理图像的问题进行了研究。我们首先分析了应用普通条件随机场得到的实验数据。面对这些模型令人失望的性能,我们引入了一个具有空间相互作用的随机变量(通常称为随机环境中的随机变量)。对于这类模型,我们将谱密度和自相关函数确定为定义良好的量,并设计了一种用于估计相关参数的方案。这种方法得到的新特征集应用于真实图像,即使对于 10x16 大小的方框,也能观察到准确的区分。