Dept. of Electr. and Comput. Eng., Missouri Univ., Columbia, MO.
IEEE Trans Image Process. 1996;5(9):1293-302. doi: 10.1109/83.535841.
We present a new approach to the modeling and decomposition of Gaussian mixtures by using robust statistical methods. The mixture distribution is viewed as a contaminated Gaussian density. Using this model and the model-fitting (MF) estimator, we propose a recursive algorithm called the Gaussian mixture density decomposition (GMDD) algorithm for successively identifying each Gaussian component in the mixture. The proposed decomposition scheme has advantages that are desirable but lacking in most existing techniques. In the GMDD algorithm the number of components does not need to be specified a priori, the proportion of noisy data in the mixture can be large, the parameter estimation of each component is virtually initial independent, and the variability in the shape and size of the component densities in the mixture is taken into account. Gaussian mixture density modeling and decomposition has been widely applied in a variety of disciplines that require signal or waveform characterization for classification and recognition. We apply the proposed GMDD algorithm to the identification and extraction of clusters, and the estimation of unknown probability densities. Probability density estimation by identifying a decomposition using the GMDD algorithm, that is, a superposition of normal distributions, is successfully applied to automated cell classification. Computer experiments using both real data and simulated data demonstrate the validity and power of the GMDD algorithm for various models and different noise assumptions.
我们提出了一种新的方法,通过使用稳健的统计方法对高斯混合模型进行建模和分解。将混合分布视为受污染的高斯密度。使用该模型和模型拟合(MF)估计器,我们提出了一种称为高斯混合密度分解(GMDD)算法的递归算法,用于成功识别混合中的每个高斯分量。所提出的分解方案具有大多数现有技术所缺乏的优势。在 GMDD 算法中,不需要事先指定分量的数量,混合中噪声数据的比例可以很大,每个分量的参数估计几乎是初始独立的,并且混合中分量密度的形状和大小的可变性被考虑在内。高斯混合密度建模和分解已广泛应用于需要信号或波形特征以进行分类和识别的各种学科。我们将提出的 GMDD 算法应用于聚类的识别和提取,以及未知概率密度的估计。通过使用 GMDD 算法识别分解来进行概率密度估计,即正态分布的叠加,成功地应用于自动细胞分类。使用真实数据和模拟数据的计算机实验证明了 GMDD 算法对于各种模型和不同噪声假设的有效性和强大性。