School of Engineering, University ofWarwick, Coventry, UK.
IEEE Trans Image Process. 2012 Jan;21(1):145-56. doi: 10.1109/TIP.2011.2162419. Epub 2011 Jul 18.
In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.
在本文中,我们提出了一种自适应图像均衡算法,该算法可自动增强输入图像的对比度。该算法使用高斯混合模型来模拟图像灰度分布,模型中的高斯分量的交点用于将图像的动态范围划分为输入灰度区间。通过根据主导高斯分量和输入区间的累积分布函数,将每个输入区间的像素灰度转换为适当的输出灰度区间,生成对比度均衡的图像。为了考虑图像中的均匀区域表示图像直方图中的均匀静音(或一组高斯分量)的假设,与具有较大方差的高斯分量相比,具有较小方差的高斯分量的权重较小,并且灰度级分布也用于对输入区间到输出区间的映射中的分量进行加权。实验结果表明,与几种最先进的算法相比,所提出的算法可以生成更好或可比的增强图像。与其他算法不同,该算法在给定的增强图像动态范围中无需进行参数设置,并且可以应用于广泛的图像类型。