Suppr超能文献

谷氨酸能突触中蛋白质泛素化的历史视角和进展。

Historical perspective and progress on protein ubiquitination at glutamatergic synapses.

机构信息

Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.

出版信息

Neuropharmacology. 2021 Sep 15;196:108690. doi: 10.1016/j.neuropharm.2021.108690. Epub 2021 Jun 29.

Abstract

Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.

摘要

转录-翻译偶联导致产生蛋白质,这些蛋白质是控制关键神经元过程的关键,包括神经元发育和突触强度的变化。尽管这些事件一直是神经科学的一个主要主题,但通过翻译后信号通路对蛋白质的调节对于这些神经元过程同样重要。泛素是一种通过共价键连接到其靶标/底物的翻译后修饰物。蛋白质的泛素化在多种信号通路中起着关键作用,其中主要的是通过一种称为蛋白酶体的大型分子机器来去除其底物。在这里,我回顾了 40 年来在谷氨酸能突触中的神经系统中泛素化的进展,重点介绍了轴突寻路、突触形成、突触前释放、树突棘形成以及对突触后谷氨酸受体的调节。最后,我阐明了泛素生物学中的新主题,这些主题可能挑战我们目前对神经系统中泛素信号的理解。

相似文献

1
Historical perspective and progress on protein ubiquitination at glutamatergic synapses.
Neuropharmacology. 2021 Sep 15;196:108690. doi: 10.1016/j.neuropharm.2021.108690. Epub 2021 Jun 29.
2
The ubiquitin-proteasome system functionally links neuronal Tomosyn-1 to dendritic morphology.
J Biol Chem. 2018 Feb 16;293(7):2232-2246. doi: 10.1074/jbc.M117.815514. Epub 2017 Dec 21.
3
Presynaptic bouton compartmentalization and postsynaptic density-mediated glutamate receptor clustering via phase separation.
Neuropharmacology. 2021 Aug 1;193:108622. doi: 10.1016/j.neuropharm.2021.108622. Epub 2021 May 26.
4
5
Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.
Brain Struct Funct. 2016 May;221(4):2093-107. doi: 10.1007/s00429-015-1029-4. Epub 2015 Mar 18.
6
Glutamate synapse in developing brain: an integrative perspective beyond the silent state.
Trends Neurosci. 2009 Oct;32(10):532-7. doi: 10.1016/j.tins.2009.07.003. Epub 2009 Sep 4.
7
Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission.
Neuron. 2017 Apr 19;94(2):312-321.e3. doi: 10.1016/j.neuron.2017.03.047.
8
Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?
Prog Neurobiol. 2014 Jan;112:50-69. doi: 10.1016/j.pneurobio.2013.10.003. Epub 2013 Oct 22.
9
Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors.
J Neurosci. 2006 Nov 22;26(47):12152-64. doi: 10.1523/JNEUROSCI.3072-06.2006.
10
Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission.
PLoS One. 2011;6(12):e28380. doi: 10.1371/journal.pone.0028380. Epub 2011 Dec 15.

引用本文的文献

1
Neddylation regulates the development and function of glutamatergic neurons.
Commun Biol. 2025 Sep 9;8(1):1338. doi: 10.1038/s42003-025-08680-x.
2
Metabolomic insights into late-life depression: a systematic review.
BMC Geriatr. 2025 Aug 13;25(1):618. doi: 10.1186/s12877-025-06256-2.
3
Cypin regulates K63-linked polyubiquitination to shape synaptic content.
Sci Adv. 2025 Jul 11;11(28):eads5467. doi: 10.1126/sciadv.ads5467.
4
Emerging roles for E3 ubiquitin ligases in neural development and disease.
Front Cell Dev Biol. 2025 May 27;13:1557653. doi: 10.3389/fcell.2025.1557653. eCollection 2025.
5
OTUD3 inhibits breast cancer cell metastasis by regulating TGF-β pathway through deubiquitinating SMAD7.
Cancer Cell Int. 2025 May 17;25(1):181. doi: 10.1186/s12935-025-03822-x.
6
Glua1 Ubiquitination in Synaptic Plasticity and Cognitive Functions: Implications for Neurodegeneration.
J Neurosci. 2024 Jan 17;44(3):e2018232024. doi: 10.1523/JNEUROSCI.2018-23.2024.
9
Ubiquitination of the GluA1 Subunit of AMPA Receptors Is Required for Synaptic Plasticity, Memory, and Cognitive Flexibility.
J Neurosci. 2023 Jul 26;43(30):5448-5457. doi: 10.1523/JNEUROSCI.1542-22.2023. Epub 2023 Jul 7.
10
KCTD13-mediated ubiquitination and degradation of GluN1 regulates excitatory synaptic transmission and seizure susceptibility.
Cell Death Differ. 2023 Jul;30(7):1726-1741. doi: 10.1038/s41418-023-01174-5. Epub 2023 May 4.

本文引用的文献

1
The proteasome and its role in the nervous system.
Cell Chem Biol. 2021 Jul 15;28(7):903-917. doi: 10.1016/j.chembiol.2021.04.003. Epub 2021 Apr 26.
2
Functional interaction of ubiquitin ligase RNF167 with UBE2D1 and UBE2N promotes ubiquitination of AMPA receptor.
FEBS J. 2021 Aug;288(16):4849-4868. doi: 10.1111/febs.15796. Epub 2021 Mar 20.
3
Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly.
Nature. 2021 Feb;590(7847):671-676. doi: 10.1038/s41586-021-03197-9. Epub 2021 Feb 3.
4
Emerging functions of branched ubiquitin chains.
Cell Discov. 2021 Jan 26;7(1):6. doi: 10.1038/s41421-020-00237-y.
5
Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity.
Nat Chem Biol. 2020 Nov;16(11):1227-1236. doi: 10.1038/s41589-020-0598-6. Epub 2020 Aug 3.
6
The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation.
Neurobiol Learn Mem. 2020 Oct;174:107286. doi: 10.1016/j.nlm.2020.107286. Epub 2020 Aug 1.
7
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders.
Mol Psychiatry. 2021 Jan;26(1):247-264. doi: 10.1038/s41380-020-0849-7. Epub 2020 Jul 24.
8
Bassoon inhibits proteasome activity via interaction with PSMB4.
Cell Mol Life Sci. 2021 Feb;78(4):1545-1563. doi: 10.1007/s00018-020-03590-z. Epub 2020 Jul 10.
9
The potential roles of deubiquitinating enzymes in brain diseases.
Ageing Res Rev. 2020 Aug;61:101088. doi: 10.1016/j.arr.2020.101088. Epub 2020 May 26.
10
Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies.
Ageing Res Rev. 2020 Aug;61:101078. doi: 10.1016/j.arr.2020.101078. Epub 2020 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验