Suppr超能文献

使用闭环循环系统对氧气和二氧化碳的运输及交换进行建模。

Modeling oxygen and carbon dioxide transport and exchange using a closed loop circulatory system.

作者信息

Carlson Brian E, Anderson Joseph C, Raymond Gary M, Dash Ranjan K, Bassingthwaighte James B

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

Adv Exp Med Biol. 2008;614:353-60. doi: 10.1007/978-0-387-74911-2_39.

Abstract

The binding and buffering of O2 and CO2 in the blood influence their exchange in lung and tissues and their transport through the circulation. To investigate the binding and buffering effects, a model of blood-tissue gas exchange is used. The model accounts for hemoglobin saturation, the simultaneous binding of O2, CO2, H+, 2,3-DPG to hemoglobin, and temperature effects. Invertible Hill-type saturation equations facilitate rapid calculation of respiratory gas redistribution among the plasma, red blood cell and tissue that occur along the concentration gradients in the lung and in the capillary-tissue exchange regions. These equations are well-suited to analysis of transients in tissue metabolism and partial pressures of inhaled gas. The modeling illustrates that because red blood cell velocities in the flowing blood are higher than plasma velocities after a transient there can be prolonged differences between RBC and plasma oxygen partial pressures. The blood-tissue gas exchange model has been incorporated into a higher level model of the circulatory system plus pulmonary mechanics and gas exchange using the RBC and plasma equations to account for pH and CO2 buffering in the blood.

摘要

血液中氧气和二氧化碳的结合与缓冲作用会影响它们在肺和组织中的交换以及在循环系统中的运输。为了研究结合与缓冲效应,采用了一种血液-组织气体交换模型。该模型考虑了血红蛋白饱和度、氧气、二氧化碳、氢离子、2,3-二磷酸甘油酸与血红蛋白的同时结合以及温度效应。可逆的希尔型饱和度方程有助于快速计算沿着肺和毛细血管-组织交换区域的浓度梯度在血浆、红细胞和组织之间发生的呼吸气体再分布。这些方程非常适合分析组织代谢瞬变和吸入气体的分压。建模表明,由于瞬变后流动血液中红细胞的速度高于血浆速度,红细胞和血浆氧分压之间可能会存在长期差异。血液-组织气体交换模型已被纳入一个更高层次的循环系统模型,该模型结合了肺力学和气体交换,使用红细胞和血浆方程来解释血液中的pH值和二氧化碳缓冲作用。

相似文献

5
The blood oxygen transport system. A numerical simulation of capillary-tissue respiratory gas exchange.
Acta Med Scand Suppl. 1975;578:19-29. doi: 10.1111/j.0954-6820.1975.tb06499.x.
8
Influence of temperature on hemoglobin-ligand interaction in whole blood.温度对全血中血红蛋白-配体相互作用的影响。
J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):545-50. doi: 10.1152/jappl.1977.43.3.545.
9
Numerical values of the classical Haldane coefficient.经典哈代系数的数值。
J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):850-9. doi: 10.1152/jappl.1984.57.3.850.

引用本文的文献

本文引用的文献

5
The kinetics of deoxygenation of human haemoglobin.人血红蛋白的脱氧动力学
Biochem J. 1961 Feb;78(2):236-45. doi: 10.1042/bj0780236.
7
Morphometry of pig coronary arterial trees.猪冠状动脉树的形态测量学
Am J Physiol. 1993 Jul;265(1 Pt 2):H350-65. doi: 10.1152/ajpheart.1993.265.1.H350.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验