Kallio Pauli, Liu Zhanliang, Mäntsälä Pekka, Niemi Jarmo, Metsä-Ketelä Mikko
Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland.
Chem Biol. 2008 Feb;15(2):157-66. doi: 10.1016/j.chembiol.2007.12.011.
Tailoring steps in aromatic polyketide antibiotic biosynthesis are an important source of structural diversity and, consequently, an intriguing focal point for enzymological studies. PgaE and PgaM from Streptomyces sp. PGA64 are representatives of flavoenzymes catalyzing early post-PKS reactions in angucycline biosynthesis. This in vitro study illustrates that the chemoenzymatic conversion of UWM6 into the metabolite, gaudimycin C, requires multiple closely coupled reactions to prevent intermediate degradation. The NMR structure of gaudimycin C confirms that the reaction cascade involves C12- and C12b-hydroxylation, C2,3-dehydration, and stereospecific ketoreduction at C6. Enzymatic 18O incorporation studies verify that the oxygens at C12 and C12b derive from O2 and H2O, respectively. The results indicate that PgaM deviates mechanistically from flavoprotein monooxygenases, and suggest an alternative catalytic mechanism involving a quinone methide intermediate.
芳香族聚酮类抗生素生物合成中的修饰步骤是结构多样性的重要来源,因此也是酶学研究中一个引人关注的焦点。来自链霉菌属PGA64的PgaE和PgaM是催化安古霉素生物合成中聚酮合酶后早期反应的黄素酶代表。这项体外研究表明,将UWM6化学酶促转化为代谢产物高迪霉素C需要多个紧密偶联的反应,以防止中间体降解。高迪霉素C的核磁共振结构证实,反应级联涉及C12和C12b羟基化、C2,3脱水以及C6处的立体特异性酮还原。酶促18O掺入研究证实,C12和C12b处的氧分别来自O2和H2O。结果表明,PgaM在机制上与黄素蛋白单加氧酶不同,并提示了一种涉及醌甲基化物中间体的替代催化机制。