Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan.
IEEE Trans Image Process. 1995;4(8):1141-6. doi: 10.1109/83.403419.
The combination of singular value decomposition (SVD) and vector quantization (VQ) is proposed as a compression technique to achieve low bit rate and high quality image coding. Given a codebook consisting of singular vectors, two algorithms, which find the best-fit candidates without involving the complicated SVD computation, are described. Simulation results show that the proposed methods are better than the discrete cosine transform (DCT) in terms of energy compaction, data rate, image quality, and decoding complexity.
提出了奇异值分解 (SVD) 和矢量量化 (VQ) 的组合作为一种压缩技术,以实现低比特率和高质量的图像编码。 所提出的方法使用包含奇异向量的码本来实现,描述了两种不需要涉及复杂 SVD 计算即可找到最佳匹配候选者的算法。 仿真结果表明,在所提出的方法中,在能量压缩、数据速率、图像质量和解码复杂度方面,均优于离散余弦变换 (DCT)。