Suppr超能文献

基于最优多线性奇异值分解(3D-VOI-OMLSVD)的 3D 放射图像近无损压缩

Near Lossless Compression for 3D Radiological Images Using Optimal Multilinear Singular Value Decomposition (3D-VOI-OMLSVD).

机构信息

Department of Computer Science and Applications, The Gandhigram Rural Institute (Deemed to Be University), Gandhigram, 624 302, Tamil Nadu, India.

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

出版信息

J Digit Imaging. 2023 Feb;36(1):259-275. doi: 10.1007/s10278-022-00687-8. Epub 2022 Aug 29.

Abstract

Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decompression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D image volume compression method based on optimal multilinear singular value decomposition called "3D-VOI-OMLSVD." The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decompressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the compression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods, namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average performance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.

摘要

存储和传输高压缩比的 3D 放射影像学图像,在解压后可创建高质量的重建图像,这是高效远程放射学的关键需求。为了满足这一需求,我们提出了一种基于最优多线性奇异值分解的近无损 3D 图像体积压缩方法,称为“3D-VOI-OMLSVD”。该方法首先从 3D 图像体积中剔除任何空白的 2D 图像切片,并使用选择性边界体积 (SBV) 来识别和提取感兴趣体积 (VOI)。接下来,使用最优多线性奇异值分解 (OMLSVD) 对 VOI 进行分解,得到相应的核心张量、因子矩阵和奇异值,并使用自适应二进制范围编码器 (ABRC) 进行压缩,集成作为熵编码器。压缩后的文件可以传输或发送,然后进行解压以重建原始图像。通过反向上述过程并使用与压缩 3D 图像相关联的边界体积坐标融合背景,可以获得解压后的 VOI。使用定量评估指标(如压缩率 (CR)、比特率 (BR)、峰值信噪比 (PSNR) 和结构相似性指数 (SSIM))对各种不同成像模式和维度的 3D 放射影像学图像进行了方法性能测试。此外,我们还研究了 VOI 提取对模型性能的影响,然后将其与两种流行的压缩方法 JPEG 和 JPEG2000 进行了比较。我们提出的方法 3D-VOI-OMLSVD 显示出高的 CR 值,最高可达 37.31,低的 BR,最低可达 0.21。SSIM 得分始终很高,平均性能为 0.9868,同时图像解码时间小于 1 秒。我们观察到,通过 VOI 提取,压缩率大大提高,比特率显著降低,从而大大减少了编码和解码时间。与 JPEG 和 JPEG2000 相比,我们的方法在更高的 CR 和更低的 BR 方面始终表现更好。结果表明,所提出的压缩方法能够始终如一地创建高质量的图像压缩,并且与两种最先进且广泛使用的方法 JPEG 和 JPEG2000 相比,总体效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae57/9984668/1b560d367703/10278_2022_687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验