Suppr超能文献

菌毛粘附素FimH形成的捕获键由于变构调节而受到机械力的增强。

FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation.

作者信息

Yakovenko Olga, Sharma Shivani, Forero Manu, Tchesnokova Veronika, Aprikian Pavel, Kidd Brian, Mach Albert, Vogel Viola, Sokurenko Evgeni, Thomas Wendy E

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Biol Chem. 2008 Apr 25;283(17):11596-605. doi: 10.1074/jbc.M707815200. Epub 2008 Feb 21.

Abstract

The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test this directly. If force was loaded slowly, most of the bonds broke up at low force (<60 piconewtons of rupture force). However, when force was loaded rapidly, all bonds survived until much higher force (140-180 piconewtons of rupture force), behavior that indicates a catch bond. Structural mutations or pretreatment with a monoclonal antibody, both of which allosterically stabilize a high affinity conformation of FimH, cause all bonds to survive until high forces regardless of the rate at which force is applied. Pretreatment of FimH bonds with intermediate force has the same strengthening effect on the bonds. This demonstrates that FimH forms catch bonds and that tensile force induces an allosteric switch to the high affinity, strong binding conformation of the adhesin. The catch bond behavior of FimH, the amount of force needed to regulate FimH, and the allosteric mechanism all provide insight into how bacteria bind and form biofilms in fluid flow. Additionally, these observations may provide a means for designing antiadhesive mechanisms.

摘要

细菌黏附蛋白FimH是大肠杆菌最常见的黏附素,在低流速下介导弱黏附,而在高流速下介导强黏附。有证据表明,出现这种情况是因为FimH形成了捕获键,即受拉伸机械力强化的键。在此,我们用原子力显微镜对单个分离的FimH键施加力,以便直接对此进行测试。如果缓慢加载力,大多数键在低力(断裂力<60皮牛顿)下就会断裂。然而,当快速加载力时,所有键都能承受直至更高的力(断裂力为140 - 180皮牛顿),这种行为表明存在捕获键。结构突变或用单克隆抗体进行预处理,这两种方法都会变构稳定FimH的高亲和力构象,导致所有键无论力的施加速率如何都能承受直至高力。用中等力对FimH键进行预处理对键具有相同的强化作用。这表明FimH形成了捕获键,并且拉伸力会诱导黏附素转变为高亲和力、强结合的构象。FimH的捕获键行为、调节FimH所需的力的大小以及变构机制都为细菌在流体流动中如何黏附并形成生物膜提供了见解。此外,这些观察结果可能为设计抗黏附机制提供一种方法。

相似文献

1
FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation.
J Biol Chem. 2008 Apr 25;283(17):11596-605. doi: 10.1074/jbc.M707815200. Epub 2008 Feb 21.
2
Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds.
PLoS Biol. 2006 Sep;4(9):e298. doi: 10.1371/journal.pbio.0040298.
3
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
Biophys J. 2006 Feb 1;90(3):753-64. doi: 10.1529/biophysj.105.066548. Epub 2005 Nov 4.
4
Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose.
J Biol Chem. 2007 Aug 10;282(32):23437-46. doi: 10.1074/jbc.M702037200. Epub 2007 Jun 13.
6
Allosteric coupling in the bacterial adhesive protein FimH.
J Biol Chem. 2013 Aug 16;288(33):24128-39. doi: 10.1074/jbc.M113.461376. Epub 2013 Jul 2.
7
Catch-bond mechanism of the bacterial adhesin FimH.
Nat Commun. 2016 Mar 7;7:10738. doi: 10.1038/ncomms10738.
8
RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain.
Proteins. 2020 Apr;88(4):593-603. doi: 10.1002/prot.25840. Epub 2019 Nov 5.

引用本文的文献

1
Not gently down the stream: flow induces amyloid bonding in environmental and pathological fungal biofilms.
mBio. 2025 Jun 11;16(6):e0020325. doi: 10.1128/mbio.00203-25. Epub 2025 May 16.
2
Engineering tunable catch bonds with DNA.
Nat Commun. 2024 Oct 12;15(1):8828. doi: 10.1038/s41467-024-52749-w.
5
FimH-mannose noncovalent bonds survive minutes to hours under force.
Biophys J. 2024 Sep 17;123(18):3038-3050. doi: 10.1016/j.bpj.2024.07.001. Epub 2024 Jul 2.
6
Engineering an artificial catch bond using mechanical anisotropy.
Nat Commun. 2024 Apr 8;15(1):3019. doi: 10.1038/s41467-024-46858-9.
7
Shear force enhances adhesion of by counteracting pilus-driven surface departure.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2307718120. doi: 10.1073/pnas.2307718120. Epub 2023 Oct 3.
10
Binding site plasticity regulation of the FimH catch-bond mechanism.
Biophys J. 2023 Jul 11;122(13):2744-2756. doi: 10.1016/j.bpj.2023.05.029. Epub 2023 Jun 1.

本文引用的文献

1
Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia coli.
J Biol Chem. 2008 Mar 21;283(12):7823-33. doi: 10.1074/jbc.M707804200. Epub 2008 Jan 3.
2
Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose.
J Biol Chem. 2007 Aug 10;282(32):23437-46. doi: 10.1074/jbc.M702037200. Epub 2007 Jun 13.
3
Weak rolling adhesion enhances bacterial surface colonization.
J Bacteriol. 2007 Mar;189(5):1794-802. doi: 10.1128/JB.00899-06. Epub 2006 Dec 22.
4
A structure-based sliding-rebinding mechanism for catch bonds.
Biophys J. 2007 Mar 1;92(5):1471-85. doi: 10.1529/biophysj.106.097048. Epub 2006 Dec 1.
5
A quantitative analysis of single protein-ligand complex separation with the atomic force microscope.
Biophys Chem. 1997 Sep 1;67(1-3):211-9. doi: 10.1016/s0301-4622(97)00045-8.
6
Flow-enhanced adhesion regulated by a selectin interdomain hinge.
J Cell Biol. 2006 Sep 25;174(7):1107-17. doi: 10.1083/jcb.200606056.
7
The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques.
Biophys J. 2006 Nov 15;91(10):3848-56. doi: 10.1529/biophysj.106.088989. Epub 2006 Sep 1.
8
Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds.
PLoS Biol. 2006 Sep;4(9):e298. doi: 10.1371/journal.pbio.0040298.
9
The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes.
Mol Microbiol. 2006 Sep;61(6):1556-68. doi: 10.1111/j.1365-2958.2006.05352.x. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验