Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada.
Nat Commun. 2024 Oct 12;15(1):8828. doi: 10.1038/s41467-024-52749-w.
Unlike most adhesive bonds, biological catch bonds strengthen with increased tension. This characteristic is essential to specific receptor-ligand interactions, underpinning biological adhesion dynamics, cell communication, and mechanosensing. While artificial catch bonds have been conceived, the tunability of their catch behaviour is limited. Here, we present the fish-hook, a rationally designed DNA catch bond that can be finely adjusted to a wide range of catch behaviours. We develop models to design these DNA structures and experimentally validate different catch behaviours by single-molecule force spectroscopy. The fish-hook architecture supports a vast sequence-dependent behaviour space, making it a valuable tool for reprogramming biological interactions and engineering force-strengthening materials.
与大多数黏附键不同,生物捕获键在张力增加时会增强。这种特性对于特定的受体-配体相互作用至关重要,为生物黏附动力学、细胞通讯和机械传感提供了基础。虽然已经设计出了人工捕获键,但它们的捕获行为的可调性有限。在这里,我们提出了鱼钩,这是一种经过合理设计的 DNA 捕获键,可以精细地调整到广泛的捕获行为范围内。我们开发了模型来设计这些 DNA 结构,并通过单分子力谱实验验证了不同的捕获行为。鱼钩结构支持广阔的序列依赖性行为空间,使其成为重新编程生物相互作用和工程力增强材料的有价值工具。