Suppr超能文献

胶质细胞抗氧化网络与神经元抗坏血酸:对H₂O₂信号传导具有保护作用但又允许其存在

The glial antioxidant network and neuronal ascorbate: protective yet permissive for H(2)O(2) signaling.

作者信息

Avshalumov Marat V, MacGregor Duncan G, Sehgal Lilly M, Rice Margaret E

机构信息

Departments of Physiology & Neuroscience and Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016 USA.

出版信息

Neuron Glia Biol. 2004 Nov;1(4):365-76. doi: 10.1017/S1740925X05000311.

Abstract

Increasing evidence implicates reactive oxygen species, particularly hydrogen peroxide (H(2)O(2)), as intracellular and intercellular messengers in the brain. This raises the question of how the antioxidant network in the brain can be sufficiently permissive to allow messages to be conveyed yet, at the same time, provide adequate protection against oxidative damage. Here we present evidence that this is accomplished in part by differential antioxidant compartmentalization between glia and neurons. Based on the rationale that the glia-to-neuron ratio is higher in guinea-pig brain than in rat brain, we examined the neuroprotective role of the glial antioxidant network by comparing the consequences of elevated H(2)O(2) in guinea-pig and rat brain slices. The effects of exogenously applied H(2)O(2) on evoked population spikes in hippocampal slices and on edema formation in forebrain slices were assessed. In contrast to the epileptiform activity observed in rat hippocampal slices after H(2)O(2) exposure, no pathophysiology was seen in guinea-pig hippocampal slices. Similarly, elevated H(2)O(2) caused edema in rat brain slices, whereas this did not occur in guinea-pig brain tissue. The resistance of guinea-pig brain tissue to H(2)O(2) challenge was lost, however, when glutathione (GSH) synthesis was inhibited (by buthionine sulfoximine), GSH peroxidase activity was inhibited (by mercaptosuccinate), or catalase was inhibited (by 3-amino-1,2,4,-triazole). Strikingly, exogenously applied ascorbate, a predominantly neuronal antioxidant, was able to compensate for loss of any other single component of the antioxidant network. Together, these data imply significant roles for glial antioxidants and neuronal ascorbate in the prevention of pathophysiological consequences of the endogenous neuromodulator, H(2)O(2).

摘要

越来越多的证据表明,活性氧,尤其是过氧化氢(H₂O₂),在大脑中作为细胞内和细胞间信使发挥作用。这就引发了一个问题:大脑中的抗氧化网络如何能够充分宽松,以便传递信息,同时又能提供足够的保护以防止氧化损伤。在此,我们提供证据表明,这部分是通过神经胶质细胞和神经元之间不同的抗氧化区室化来实现的。基于豚鼠大脑中神经胶质细胞与神经元的比例高于大鼠大脑这一原理,我们通过比较豚鼠和大鼠脑片内H₂O₂升高的后果,研究了神经胶质细胞抗氧化网络的神经保护作用。评估了外源性应用H₂O₂对海马体脑片诱发的群体峰电位以及前脑脑片水肿形成的影响。与H₂O₂暴露后大鼠海马体脑片中观察到的癫痫样活动不同,豚鼠海马体脑片中未出现病理生理学现象。同样,H₂O₂升高在大鼠脑片中引起水肿,而在豚鼠脑组织中未发生这种情况。然而,当谷胱甘肽(GSH)合成受到抑制(通过丁硫氨酸亚砜胺)、GSH过氧化物酶活性受到抑制(通过巯基琥珀酸)或过氧化氢酶受到抑制(通过3-氨基-1,2,4-三唑)时,豚鼠脑组织对H₂O₂攻击的抵抗力丧失。引人注目的是,外源性应用的抗坏血酸,一种主要存在于神经元中的抗氧化剂,能够补偿抗氧化网络中任何其他单一成分的缺失。总之,这些数据表明神经胶质细胞抗氧化剂和神经元抗坏血酸在预防内源性神经调节剂H₂O₂的病理生理后果中发挥着重要作用。

相似文献

1
The glial antioxidant network and neuronal ascorbate: protective yet permissive for H(2)O(2) signaling.
Neuron Glia Biol. 2004 Nov;1(4):365-76. doi: 10.1017/S1740925X05000311.
2
Role of antioxidant defences in the species-specific response of isolated atria to menadione.
Comp Biochem Physiol C Toxicol Pharmacol. 2002 Jun;132(2):143-51. doi: 10.1016/s1532-0456(02)00060-1.
5
Differential compartmentalization of brain ascorbate and glutathione between neurons and glia.
Neuroscience. 1998 Feb;82(4):1213-23. doi: 10.1016/s0306-4522(97)00347-3.
7
Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices.
Chem Biol Interact. 2006 Nov 7;163(3):207-17. doi: 10.1016/j.cbi.2006.08.005. Epub 2006 Aug 18.
9
Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus.
Eur J Pharmacol. 2006 Aug 14;543(1-3):40-7. doi: 10.1016/j.ejphar.2006.05.046. Epub 2006 Jun 3.
10
Ascorbate inhibits edema in brain slices.
J Neurochem. 2000 Mar;74(3):1263-70. doi: 10.1046/j.1471-4159.2000.741263.x.

引用本文的文献

1
Differential Regulation of Adhesion and Phagocytosis of Resting and Activated Microglia by Dopamine.
Front Cell Neurosci. 2018 Sep 11;12:309. doi: 10.3389/fncel.2018.00309. eCollection 2018.
2
Glutathione induces GABA release through P2XR activation on Müller glia.
Neurogenesis (Austin). 2017 Feb 6;4(1):e1283188. doi: 10.1080/23262133.2017.1283188. eCollection 2017.
3
Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.
Mol Neurobiol. 2016 Dec;53(10):6910-6924. doi: 10.1007/s12035-015-9567-6. Epub 2015 Dec 14.
5
Inhibitory and excitatory neuromodulation by hydrogen peroxide: translating energetics to information.
J Physiol. 2015 Aug 15;593(16):3431-46. doi: 10.1113/jphysiol.2014.273839. Epub 2015 Feb 27.
6
Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.
PLoS One. 2014 Sep 30;9(9):e108168. doi: 10.1371/journal.pone.0108168. eCollection 2014.
7
Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine.
Evid Based Complement Alternat Med. 2013;2013:152798. doi: 10.1155/2013/152798. Epub 2013 Dec 10.
8
Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia.
Br J Pharmacol. 2012 Jun;166(4):1211-24. doi: 10.1111/j.1476-5381.2012.01912.x.
9
Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.
J Neurochem. 2011 Sep;118(5):721-36. doi: 10.1111/j.1471-4159.2011.07358.x. Epub 2011 Aug 4.
10
H2O2: a dynamic neuromodulator.
Neuroscientist. 2011 Aug;17(4):389-406. doi: 10.1177/1073858411404531. Epub 2011 Jun 10.

本文引用的文献

2
Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia.
Neurochem Res. 2004 Nov;29(11):1943-9. doi: 10.1007/s11064-004-6869-x.
3
Peroxide detoxification by brain cells.
J Neurosci Res. 2005;79(1-2):157-65. doi: 10.1002/jnr.20280.
4
Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury.
Cell Calcium. 2004 Sep-Oct;36(3-4):257-64. doi: 10.1016/j.ceca.2004.02.012.
5
Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity.
Mol Neurobiol. 2004 Apr;29(2):167-78. doi: 10.1385/MN:29:2:167.
6
Redox control of signal transduction, gene expression and cellular senescence.
Neurochem Res. 2004 Mar;29(3):617-28. doi: 10.1023/b:nere.0000014832.78725.1a.
7
Activity of acetylcholine system in cerebral cortex of various unanesthetized mammals.
Am J Physiol. 1952 Mar;168(3):747-59. doi: 10.1152/ajplegacy.1952.168.3.747.
8
Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.
J Neural Transm (Vienna). 2003 Dec;110(12):1337-48. doi: 10.1007/s00702-003-0049-z. Epub 2003 Oct 24.
9
NADPH oxidase immunoreactivity in the mouse brain.
Brain Res. 2003 Oct 24;988(1-2):193-8. doi: 10.1016/s0006-8993(03)03364-x.
10
Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11729-34. doi: 10.1073/pnas.1834314100. Epub 2003 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验