Suppr超能文献

Non-insulin-dependent diabetes-induced defects in cardiac cellular calcium regulation.

作者信息

Allo S N, Lincoln T M, Wilson G L, Green F J, Watanabe A M, Schaffer S W

机构信息

Department of Pharmacology, College of Medicine, University of South Alabama, Mobile 36688.

出版信息

Am J Physiol. 1991 Jun;260(6 Pt 1):C1165-71. doi: 10.1152/ajpcell.1991.260.6.C1165.

Abstract

Non-insulin-dependent diabetic (NIDD) male Wistar rats develop a cardiomyopathy approximately 9 mo after the onset of the diabetic condition. This cardiomyopathy is characterized by reduced contractility, relaxation, cardiac work, and diastolic compliance. Although the basis for these defects is not completely understood, altered cellular Ca2+ regulation appears to play a major role in their development. In both isolated sarcolemmal membrane and cardiomyocytes, significant diabetes-linked defects in Ca2+ metabolism were observed. A small, but significant, decrease in the rate of sarcolemmal ATP-dependent Ca2+ transport of the diabetic heart was observed. Also evident was a major defect in sarcolemmal Na(+)-Ca2+ exchange as determined by reduced Na(+)-dependent Ca2+ transport into vesicles and Na(+)-dependent Ca2+ efflux from 45Ca(2+)-loaded cardiomyocytes from diabetic rats. In isolated cardiomyocytes, it was observed that the relative fluorescence of fura-2 at 502 nm was higher in cells from NIDD hearts, suggestive of a higher cytosolic free Ca2+. Consistent with diabetes-linked defects in Ca(2+)-transporter activities, the accumulation of Ca2+ after depolarization with KCl was greater in the diabetic. This study demonstrates that diabetes-induced defects in Ca2+ movement by the various Ca2+ transporters lead to abnormal cytosolic Ca2+ regulation by the diabetic cardiomyocytes. This observation supports the notion that abnormal Ca2+ regulation contributes to the development of the NIDD cardiomyopathy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验