Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN.
IEEE Trans Image Process. 1993;2(3):296-310. doi: 10.1109/83.236536.
The authors present a Markov random field model which allows realistic edge modeling while providing stable maximum a posterior (MAP) solutions. The model, referred to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisfies several desirable analytical and computational properties for map estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the a posteriori log-likelihood function. The GGMRF is demonstrated to be useful for image reconstruction in low-dosage transmission tomography.
作者提出了一个马尔可夫随机场模型,该模型允许进行现实的边缘建模,同时提供稳定的最大后验 (MAP) 解。该模型被称为广义高斯马尔可夫随机场 (GGMRF),因其与鲁棒检测和估计中使用的广义高斯分布相似而得名。该模型满足了地图估计的几个理想的分析和计算特性,包括估计值对数据的连续依赖性、数据缩放时解的特征不变性,以及解位于后验对数似然函数的唯一全局最小值。该 GGMRF 被证明在低剂量透射断层摄影图像重建中是有用的。