Hou Ching T
Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, ARS, USDA. 1815 N. University Street, Peoria, IL 61604. USA.
Asia Pac J Clin Nutr. 2008;17 Suppl 1:192-5.
Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) through 10-hydroxy-8-octadecenoic acid, and racinoleic acid to 7,10,12-trihydroxy-8-octadecenoic acid. DOD showed antibacterial activity including against food-borne pathogens. Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. For example: linoleic acid was converted to12,13-epoxy-9-octadecenoic acid and then to 12,13-dihydroxy-9-octadecenoic acid (12,13-DHOA). From here, there are two bioconversion pathways. The major pathway is: 12,13-DHOA --> 12,13,17-trihydroxy-9(S)-octadecenoic acid (THOA) --> 12,17;13,17-diepoxy-16-hydroxy-9(Z)-octadecenoic acid (DEOA) --> 7-hydroxy-DEOA. The minor pathway is: 12,13-DHOA --> 12,13,16-THOA --> 12-hydroxy-13,16-epoxy-9(Z)-octadecenoic acid. 12,13,17-THOA has anti-plant pathogenic fungal activity. The tetrahydrofuranyl moiety is known in anti cancer drugs. Strain ALA2 also converts other n-3 and n-6 PUFAs such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) to many new oxygenated unsaturated fatty acid products. All of these new products have high potential for antimicrobial agents or biomedical applications. We also screened 12 Mortierella fungal strains from the ARS Culture Collection for the production of bioactive fatty acids such as dihomo-gama-linolenic acid (DGLA) and arachidonic acid. All of the strains tested produced AA and DGLA from glucose or glycerol. The top five AA producers (mg AA/g CDW) were in the following order: M. alpina > M. zychae > M. hygrophila > M. minutissima > M. parvispora. Both AA and DGLA are important natural precursors of a large family of prostaglandin and thromboxane groups.
许多氧化脂肪酸都是生物活性化合物。胆固醇诺卡氏菌和黄杆菌DS5可将油酸转化为10-羟基硬脂酸,将亚油酸转化为10-羟基-12(Z)-十八碳烯酸。铜绿假单胞菌PR3可将油酸通过10-羟基-8-十八碳烯酸转化为新化合物7,10-二羟基-8(E)-十八碳烯酸(DOD),并将racinoleic酸转化为7,10,12-三羟基-8-十八碳烯酸。DOD具有抗菌活性,包括对食源性病原体的活性。巨大芽孢杆菌ALA2可将n-6和n-3多不饱和脂肪酸转化为许多新的氧化脂肪酸。例如:亚油酸先转化为12,13-环氧-9-十八碳烯酸,然后再转化为12,13-二羟基-9-十八碳烯酸(12,13-DHOA)。从这里开始有两条生物转化途径。主要途径是:12,13-DHOA→12,13,17-三羟基-9(S)-十八碳烯酸(THOA)→12,17;13,17-二环氧-16-羟基-9(Z)-十八碳烯酸(DEOA)→7-羟基-DEOA。次要途径是:12,13-DHOA→12,13,16-THOA→12-羟基-13,16-环氧-9(Z)-十八碳烯酸。12,13,17-THOA具有抗植物病原真菌活性。四氢呋喃基部分在抗癌药物中是已知的。菌株ALA2还可将其他n-3和n-6多不饱和脂肪酸,如二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)和花生四烯酸(AA)转化为许多新的氧化不饱和脂肪酸产物。所有这些新产品在抗菌剂或生物医学应用方面都有很大潜力。我们还从美国农业部菌种保藏中心筛选了12株被孢霉真菌菌株,以生产生物活性脂肪酸,如二高-γ-亚麻酸(DGLA)和花生四烯酸。所有测试菌株都能从葡萄糖或甘油中产生AA和DGLA。AA产量最高的前五名菌株(mg AA/g CDW)顺序如下:高山被孢霉>zychae被孢霉>嗜湿被孢霉>极小被孢霉>小孢被孢霉。AA和DGLA都是一大类前列腺素和血栓烷族的重要天然前体。