Klein Eric E, Vicic Milos, Ma Chang-Ming, Low Daniel A, Drzymala Robert E
Washington University, St Louis, MO, USA.
Phys Med Biol. 2008 Mar 7;53(5):1183-208. doi: 10.1088/0031-9155/53/5/003. Epub 2008 Feb 11.
Treating shallow tumors with a homogeneous dose while simultaneously minimizing the dose to distal critical organs remains a challenge in radiotherapy. One promising approach is modulated electron radiotherapy (MERT). Due to the scattering properties of electron beams, the commercially provided secondary and tertiary photon collimation systems are not conducive for electron beam delivery when standard source-to-surface distances are used. Also, commercial treatment planning systems may not accurately model electron-beam dose distributions when collimated without the standard applicators. However, by using the photon multileaf collimators (MLCs) to create segments to modulate electron beams, the quality of superficial tumor dose distributions may improve substantially. The purpose of this study is to develop and evaluate calculations for the narrow segments needed to modulate megavoltage electron beams using photon beam multileaf collimators. Modulated electron radiotherapy (MERT) will be performed with a conventional linear accelerator equipped with a 120 leaf MLC for 6-20 MeV electron beam energies. To provide a sharp penumbra, segments were delivered with short SSDs (70-85 cm). Segment widths (SW) ranging from 1 to 10 cm were configured for delivery and planning, using BEAMnrc Monte Carlo (MC) code, and the DOSXYZnrc MC dose calculations. Calculations were performed with voxel size of 0.2 x 0.2 x 0.1 cm3. Dosimetry validation was performed using radiographic film and micro- or parallel-plate chambers. Calculated and measured data were compared using technical computing software. Beam sharpness (penumbra) degraded with decreasing incident beam energy and field size (FS), and increasing SSD. A 70 cm SSD was found to be optimal. The PDD decreased significantly with decreasing FS. The comparisons demonstrated excellent agreement for calculations and measurements within 3%, 1 mm. This study shows that accurate calculations for MERT as delivered with existing photon MLC are feasible and allows the opportunity to take advantage of the dynamic leaf motion capabilities and control systems, to provide conformal dose distributions.
在放射治疗中,在给予浅表肿瘤均匀剂量的同时,尽量减少对远端关键器官的剂量,仍然是一项挑战。一种有前景的方法是调制电子放疗(MERT)。由于电子束的散射特性,当使用标准源皮距时,商业提供的二级和三级光子准直系统不利于电子束的传输。此外,在没有标准施源器的情况下进行准直时,商业治疗计划系统可能无法准确模拟电子束剂量分布。然而,通过使用光子多叶准直器(MLC)来创建分段以调制电子束,浅表肿瘤剂量分布的质量可能会显著提高。本研究的目的是开发和评估使用光子束多叶准直器调制兆伏级电子束所需窄分段的计算方法。将使用配备120叶MLC的传统直线加速器对6 - 20 MeV电子束能量进行调制电子放疗(MERT)。为了提供锐利的半值层,分段采用短源皮距(70 - 85 cm)进行传输。使用BEAMnrc蒙特卡罗(MC)代码和DOSXYZnrc MC剂量计算方法,配置了范围从1到10 cm的分段宽度(SW)用于传输和计划。计算时体素大小为0.2×0.2×0.1 cm³。使用射线照相胶片和微平板或平行板电离室进行剂量学验证。使用技术计算软件比较计算数据和测量数据。随着入射束能量和射野大小(FS)的减小以及源皮距(SSD)的增加,射束锐利度(半值层)降低。发现70 cm的源皮距是最佳的。随着射野大小的减小,百分深度剂量(PDD)显著降低。比较结果表明,计算值和测量值在3%、1 mm范围内具有良好的一致性。本研究表明,利用现有的光子MLC进行调制电子放疗(MERT)的精确计算是可行的,并且有机会利用动态叶片运动能力和控制系统来提供适形剂量分布。