Su Shiqin, Moran Kathryn, Robar James L
Dalhousie University.
J Appl Clin Med Phys. 2014 Jul 8;15(4):4831. doi: 10.1120/jacmp.v15i4.4831.
This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) dose distributions using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity, and homogeneity within the planning target volume (PTV). The algorithm takes advantage of a commercial electron Monte Carlo dose calculation and uses the calculated result as input. Distances along ray lines from the distal side of 90% isodose line to distal surface of the PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using the coefficient of equivalent thickness method. Several regional modulation operators are applied to improve the dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms, and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity are improved compared to that with uniform bolus. For geometric phantoms with air or bone inhomogeneities, the dose homogeneity is markedly improved. The actual printed boluses conform well to the surface of complex anthropomorphic phantoms. The correspondence of the dose distribution between the calculated synthetic bolus and the actual manufactured bolus is shown. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low-cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of the prescription isodose surface and in sparing immediately adjacent normal tissues.
这是一项概念验证研究,展示了使用3D打印填充物进行调制电子放射治疗(MERT)剂量分布的能力。先前的报告涉及使用电子笔形束模型进行填充物设计以及使用铣床进行制造。在本研究中,提出了一种内部算法,该算法可在计划靶区(PTV)内优化剂量覆盖、适形性和均匀性方面的剂量分布。该算法利用商业电子蒙特卡罗剂量计算,并将计算结果用作输入。沿着从90%等剂量线远端到PTV远端表面的射线线距离用于估计填充物厚度。使用等效厚度系数法考虑计算体积内的不均匀性。应用了几个区域调制算子来改善剂量覆盖和均匀性。该过程迭代(通常两次),直到实现可接受的MERT计划,最后使用固体聚乳酸打印填充物。该方法通过规则几何体模、拟人化体模和临床小儿横纹肌肉瘤病例进行评估。在所有情况下,与均匀填充物相比,剂量适形性均得到改善。对于具有空气或骨不均匀性的几何体模,剂量均匀性显著改善。实际打印的填充物与复杂拟人化体模的表面贴合良好。显示了计算的合成填充物与实际制造的填充物之间剂量分布的对应关系。对于横纹肌肉瘤患者,相对于均匀填充物,MERT计划使左肾的平均剂量降低了38.2%。使用3D打印填充物的MERT似乎是一种实用、低成本的方法,可为电子治疗生成优化的填充物。该方法可有效改善处方等剂量面的适形性,并保护紧邻的正常组织。