Nordez A, Casari P, Cornu C
Université de Nantes, Nantes Atlantique Universités, Laboratoire Motricité, Interactions, Performance, JE 2438, UFR STAPS, 25 bis Bd Guy Mollet BP 72206, 44000 Nantes, France.
Eur J Appl Physiol. 2008 May;103(2):243-50. doi: 10.1007/s00421-008-0695-9. Epub 2008 Feb 23.
It is commonly accepted that the passive musculo-articular complex (MAC) displays a viscoelastic behavior. However, the viscosity of the MAC is still not well understood when considering the relationship between the passive resistance offered by the MAC and the stretching velocity. Therefore, in order to obtain a better knowledge of the mechanical behavior of the passive MAC, nine subjects performed passive knee extension/flexion cycles with the hip angle set at 60 degrees on a Biodex dynamometer at 5 degrees, 30 degrees, 60 degrees, 90 degrees and 120 degrees s(-1) in a randomized order to 80% of their maximal range of motion. Results show significant (P<0.001) increases with the stretching velocity for the passive torque (between +17.6 and +20.8% depending on the considered knee angle), the potential elastic energy stored during the loading (E: +22.7%), and the dissipation coefficient (DC: +22.8%). These results suggest that the role of viscosity in the MAC's mechanical behavior is limited. A linear model was well-fitted on torque-velocity (0.93<R2<0.98), E-velocity (R2=0.93) and DC-velocity (R2=0.99) relationships. The linear relationship between DC and velocity indicates that the DC does not tend towards zero for the slowest velocities and that the dissipative properties of the MAC could be modeled by combining linear viscosity and friction. The present study would allow the implementation of a rheological model to simulate the behavior of the passive MAC.
普遍认为,被动肌肉 - 关节复合体(MAC)呈现粘弹性行为。然而,在考虑MAC提供的被动阻力与拉伸速度之间的关系时,MAC的粘性仍未得到很好的理解。因此,为了更好地了解被动MAC的力学行为,九名受试者在Biodex测力计上以髋关节角度设定为60度,在5度、30度、60度、90度和120度每秒(s(-1))的速度下,以随机顺序进行被动膝关节伸展/屈曲循环,达到其最大运动范围的80%。结果显示,被动扭矩(根据所考虑的膝关节角度,增加幅度在+17.6%至+20.8%之间)、加载过程中储存的潜在弹性能量(E:+22.7%)和耗散系数(DC:+22.8%)均随拉伸速度显著增加(P<0.001)。这些结果表明,粘性在MAC力学行为中的作用是有限的。扭矩 - 速度(0.93<R2<0.98)、E - 速度(R2 = 0.93)和DC - 速度(R2 = 0.99)关系拟合得很好。DC与速度之间的线性关系表明,对于最慢的速度,DC并不趋于零,并且MAC的耗散特性可以通过结合线性粘性和摩擦来建模。本研究将允许实施流变模型来模拟被动MAC的行为。