Greiner Stephan, Wang Xi, Rauwolf Uwe, Silber Martina V, Mayer Klaus, Meurer Jörg, Haberer Georg, Herrmann Reinhold G
Department Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80 638 Munich, Germany.
Nucleic Acids Res. 2008 Apr;36(7):2366-78. doi: 10.1093/nar/gkn081. Epub 2008 Feb 24.
The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.
开花植物月见草属特别适合用于研究物种形成的分子机制。它具有一系列引人入胜的遗传特征组合,包括永久易位杂合性、质体的双亲遗传以及明确界定的物种之间普遍存在的可育性。这使得物种之间能够进行质体和细胞核的交换,常常导致质体基因组 - 基因组不兼容。为了评估其分子决定因素,我们给出了月见草属月见草亚组(=真月见草)五个基本的、遗传上可区分的质体染色体的完整核苷酸序列,它们与六个基本基因组以不同组合相关联。染色体大小从163365碱基对(质体基因组IV)到165728碱基对(质体基因组I)不等,序列相似性在96.3%至98.6%之间,总共编码113个独特基因。质体基因组的多样化是由大量的核苷酸替换、小的插入、缺失和重复引起的。这五个质体基因组与维管植物质体染色体的一般祖先设计不同,在大单拷贝区段内存在一个亚组特异性的56千碱基对倒位。这种倒位破坏了操纵子结构,可能在大约100万年前早于该亚组的分化。系统发育关系表明质体基因组I - III在一个进化枝中,而质体基因组IV似乎最接近共同祖先。