Institut für Botanik, Technische Universität Dresden, Germany Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University
Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Department of Biological Science, California State University Fullerton.
Genome Biol Evol. 2016 Jan 6;8(2):345-63. doi: 10.1093/gbe/evv256.
Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.
光合开花植物的质体基因组在结构和基因组成上通常高度保守。然而,由于光合作用能力的降低或丧失,寄生植物和菌异养植物的质体基因组可能会受到选择压力的影响。在这里,我们展示了非光合全寄生植物 Hydnora visseri(Hydnoraceae,Piperales)的大幅减少且高度分化但仍具有功能的质体基因组。该质体基因组长 27kb,包含 24 个编码核糖体蛋白、核糖体 RNA、tRNA 和少数非生物能量基因的基因,但没有与光合作用相关的基因。反向重复和小单拷贝区仅约 1.5kb,基因间区已大大减少。尽管极度减少,但基因顺序和方向与 Piperales 中相关的光合植物 Piper cenocladum 的质体基因组高度相似。Hydnora 中的基因序列高度分化,需要采用尽可能高的灵敏度的几种互补方法才能识别和注释该质体基因组。在质体基因组中,所有蛋白编码基因的转录均被检测到,并且 rps12 转录本中有一个内含子被适当剪接。全基因组鸟枪法读取深度为质体基因组的 1400×覆盖度,而线粒体基因组的覆盖度为 40×,核基因组的覆盖度为 2×。尽管基因组极度减少且序列高度分化,但存在与其他质体基因组具有远距离相似性的、具有共线性的、长转录活性的开放阅读框,以及相对于线粒体和核基因组而言较高的质体化学计量比,表明质体在 H. visseri 中仍然具有功能。提出了一个包括完全丧失质体基因组的可能性的基因减少四阶段模型,以解释非光合植物中质体基因组的范围。