Miller G, Martz H, Little T, Bertelli L
Los Alamos National Laboratory, MS-E546, Los Alamos, NM 87545, USA.
Health Phys. 2008 Mar;94(3):248-54. doi: 10.1097/01.HP.0000290624.35701.00.
Bayesian hypothesis testing may be used to qualitatively interpret a dataset as indicating something "detected" or not. Hypothesis testing is shown to be equivalent to testing the posterior distribution for positive true amounts by redefining the prior to be a mixture of the original prior and a delta-function component at 0 representing the null hypothesis that nothing is truly present. The hypothesis-testing interpretation of the data is based on the posterior probability of the usual modeling hypothesis relative to the null hypothesis. Real numerical examples are given and discussed, including the distribution of the non-null hypothesis probability over 4,000 internal dosimetry cases. Currently used comparable methods based on classical statistics are discussed.
贝叶斯假设检验可用于定性解释数据集,以表明是否“检测到”了某事物。通过将先验重新定义为原始先验与代表零假设(即实际上不存在任何事物)的0处的狄拉克函数分量的混合,假设检验被证明等同于检验正真实量的后验分布。数据的假设检验解释基于通常建模假设相对于零假设的后验概率。给出并讨论了实际数值示例,包括4000例内部剂量测定病例中非零假设概率的分布。还讨论了目前基于经典统计学的可比方法。