Suppr超能文献

关于实用贝叶斯替代零假设检验的教程。

A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.

机构信息

Department of Psychology, University of Victoria, Room A234, Cornett Building, P.O. Box 3050 STN CSC, Victoria, BC V8W 3P5, Canada.

出版信息

Behav Res Methods. 2011 Sep;43(3):679-90. doi: 10.3758/s13428-010-0049-5.

Abstract

Null-hypothesis significance testing remains the standard inferential tool in cognitive science despite its serious disadvantages. Primary among these is the fact that the resulting probability value does not tell the researcher what he or she usually wants to know: How probable is a hypothesis, given the obtained data? Inspired by developments presented by Wagenmakers (Psychonomic Bulletin & Review, 14, 779-804, 2007), I provide a tutorial on a Bayesian model selection approach that requires only a simple transformation of sum-of-squares values generated by the standard analysis of variance. This approach generates a graded level of evidence regarding which model (e.g., effect absent [null hypothesis] vs. effect present [alternative hypothesis]) is more strongly supported by the data. This method also obviates admonitions never to speak of accepting the null hypothesis. An Excel worksheet for computing the Bayesian analysis is provided as supplemental material.

摘要

尽管存在严重的缺点,零假设检验仍然是认知科学中标准的推理工具。其中首要的是,得到的概率值并没有告诉研究人员他或她通常想知道的内容:给定所获得的数据,一个假设的可能性有多大?受 Wagenmakers(《心理学期刊与评论》,14,779-804,2007)所介绍的发展的启发,我提供了一个贝叶斯模型选择方法的教程,该方法仅需要对由标准方差分析生成的平方和值进行简单的转换。这种方法针对数据更支持哪种模型(例如,效应不存在[零假设]与效应存在[替代假设])生成了一个分级别的证据水平。该方法还避免了告诫人们永远不要接受零假设的说法。提供了一个用于计算贝叶斯分析的 Excel 工作表作为补充材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验