Kottas Athanasios, Duan Jason A, Gelfand Alan E
Department of Applied Mathematics and Statistics, 1156 High Street, University of California, Santa Cruz, CA 95064, USA.
Biom J. 2008 Feb;50(1):29-42. doi: 10.1002/bimj.200610375.
Disease incidence or mortality data are typically available as rates or counts for specified regions, collected over time. We propose Bayesian nonparametric spatial modeling approaches to analyze such data. We develop a hierarchical specification using spatial random effects modeled with a Dirichlet process prior. The Dirichlet process is centered around a multivariate normal distribution. This latter distribution arises from a log-Gaussian process model that provides a latent incidence rate surface, followed by block averaging to the areal units determined by the regions in the study. With regard to the resulting posterior predictive inference, the modeling approach is shown to be equivalent to an approach based on block averaging of a spatial Dirichlet process to obtain a prior probability model for the finite dimensional distribution of the spatial random effects. We introduce a dynamic formulation for the spatial random effects to extend the model to spatio-temporal settings. Posterior inference is implemented through Gibbs sampling. We illustrate the methodology with simulated data as well as with a data set on lung cancer incidences for all 88 counties in the state of Ohio over an observation period of 21 years.
疾病发病率或死亡率数据通常以特定地区在一段时间内收集的比率或计数形式提供。我们提出贝叶斯非参数空间建模方法来分析此类数据。我们使用以狄利克雷过程先验建模的空间随机效应开发了一种分层规范。狄利克雷过程以多元正态分布为中心。后一种分布来自对数高斯过程模型,该模型提供潜在发病率表面,然后对由研究区域确定的面积单元进行分块平均。关于由此产生的后验预测推断,该建模方法被证明等同于一种基于空间狄利克雷过程分块平均的方法,以获得空间随机效应有限维分布的先验概率模型。我们为空间随机效应引入动态公式,将模型扩展到时空设置。后验推断通过吉布斯采样实现。我们用模拟数据以及俄亥俄州88个县在21年观察期内的肺癌发病率数据集来说明该方法。