Kuna Jeffrey J, Voïtchovsky Kislon, Singh Chetana, Jiang Hao, Mwenifumbo Steve, Ghorai Pradip K, Stevens Molly M, Glotzer Sharon C, Stellacci Francesco
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA.
Nat Mater. 2009 Oct;8(10):837-42. doi: 10.1038/nmat2534. Epub 2009 Sep 13.
Natural surfaces are often structured with nanometre-scale domains, yet a framework providing a quantitative understanding of how nanostructure affects interfacial energy, gamma(SL), is lacking. Conventional continuum thermodynamics treats gamma(SL) solely as a function of average composition, ignoring structure. Here we show that, when a surface has domains commensurate in size with solvent molecules, gamma(SL) is determined not only by its average composition but also by a structural component that causes gamma(SL) to deviate from the continuum prediction by a substantial amount, as much as 20% in our system. By contrasting surfaces coated with either molecular- (<2 nm) or larger-scale domains (>5 nm), we find that whereas the latter surfaces have the expected linear dependence of gamma(SL) on surface composition, the former show a markedly different non-monotonic trend. Molecular dynamics simulations show how the organization of the solvent molecules at the interface is controlled by the nanostructured surface, which in turn appreciably modifies gamma(SL).
自然表面通常具有纳米尺度的区域,然而,目前缺乏一个能定量理解纳米结构如何影响界面能γ(SL)的框架。传统的连续介质热力学仅将γ(SL)视为平均组成的函数,而忽略了结构。我们在此表明,当表面具有与溶剂分子尺寸相当的区域时,γ(SL)不仅由其平均组成决定,还由一个结构成分决定,该结构成分会使γ(SL)显著偏离连续介质预测值,在我们的系统中高达20%。通过对比涂覆有分子尺度(<2纳米)或更大尺度区域(>5纳米)的表面,我们发现,后者表面的γ(SL)对表面组成具有预期的线性依赖关系,而前者则呈现出明显不同的非单调趋势。分子动力学模拟显示了界面处溶剂分子的组织是如何由纳米结构表面控制的,而这又反过来显著改变了γ(SL)。