Suppr超能文献

用于钙调蛋白激酶II活性荧光寿命成像的基因编码探针。

Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity.

作者信息

Kwok Showming, Lee Claudia, Sánchez Susana A, Hazlett Theodore L, Gratton Enrico, Hayashi Yasunori

机构信息

RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue 46-4243A, Cambridge, MA 02139, USA.

出版信息

Biochem Biophys Res Commun. 2008 May 2;369(2):519-25. doi: 10.1016/j.bbrc.2008.02.070. Epub 2008 Feb 25.

Abstract

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.

摘要

钙/钙调蛋白依赖性蛋白激酶II(CaMKII)在中枢神经系统的兴奋性突触中高度富集,并且在突触可塑性、学习和记忆中起关键作用。然而,由于缺乏特定方法,活细胞中CaMKII活性的精确时空调节尚未得到很好的描述。在此,基于我们之前的工作,我们试图通过在CaMKII的氨基和羧基末端将其与供体和受体荧光蛋白融合,来生成一种用于CaMKII活性荧光寿命成像(FLIM)的光学探针。我们首先利用荧光蛋白在荧光光谱测定中向更长波长扩展的特性,优化了荧光蛋白的组合。然后使用数字频域FLIM(DFD-FLIM),我们证明了所得蛋白确实可以检测活细胞中的CaMKII激活。这些CaMKII的FLIM版本对于阐明CaMKII在体外和体内的功能可能是有用的。

相似文献

1
Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity.
Biochem Biophys Res Commun. 2008 May 2;369(2):519-25. doi: 10.1016/j.bbrc.2008.02.070. Epub 2008 Feb 25.
3
Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons.
J Neurosci. 2005 Mar 23;25(12):3107-12. doi: 10.1523/JNEUROSCI.0085-05.2005.
5
Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II.
J Neurochem. 2009 Jul;110(1):92-105. doi: 10.1111/j.1471-4159.2009.06108.x. Epub 2009 Apr 21.
6
A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
J Fluoresc. 2013 May;23(3):543-9. doi: 10.1007/s10895-013-1188-8. Epub 2013 Mar 3.
7
A novel fluorescence lifetime imaging system that optimizes photon efficiency.
Microsc Res Tech. 2008 Mar;71(3):201-13. doi: 10.1002/jemt.20540.
9
Imaging of Structural Plasticity of Dendritic Spines with Two-Photon Microscopy.
Methods Mol Biol. 2024;2831:209-217. doi: 10.1007/978-1-0716-3969-6_14.
10
FRET-based sensor for CaMKII activity (FRESCA): A useful tool for assessing CaMKII activity in response to Ca oscillations in live cells.
J Biol Chem. 2019 Aug 2;294(31):11876-11891. doi: 10.1074/jbc.RA119.009235. Epub 2019 Jun 14.

引用本文的文献

1
Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors.
Biosensors (Basel). 2023 Oct 19;13(10):939. doi: 10.3390/bios13100939.
2
In Vivo Imaging with Genetically Encoded Redox Biosensors.
Int J Mol Sci. 2020 Oct 31;21(21):8164. doi: 10.3390/ijms21218164.
3
Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.
Methods Mol Biol. 2020;2173:21-51. doi: 10.1007/978-1-0716-0755-8_2.
4
Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.
Chem Rev. 2018 Dec 26;118(24):11707-11794. doi: 10.1021/acs.chemrev.8b00333. Epub 2018 Dec 14.
9
Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern.
PLoS One. 2015 Mar 23;10(3):e0121109. doi: 10.1371/journal.pone.0121109. eCollection 2015.
10
Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation.
Chem Biol. 2014 Feb 20;21(2):186-97. doi: 10.1016/j.chembiol.2013.12.012. Epub 2014 Jan 30.

本文引用的文献

1
A novel fluorescence lifetime imaging system that optimizes photon efficiency.
Microsc Res Tech. 2008 Mar;71(3):201-13. doi: 10.1002/jemt.20540.
2
Bright monomeric red fluorescent protein with an extended fluorescence lifetime.
Nat Methods. 2007 Jul;4(7):555-7. doi: 10.1038/nmeth1062. Epub 2007 Jun 17.
5
A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4089-94. doi: 10.1073/pnas.0509922103. Epub 2006 Mar 6.
6
Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging.
Nat Neurosci. 2006 Feb;9(2):283-91. doi: 10.1038/nn1635. Epub 2006 Jan 22.
7
A guide to choosing fluorescent proteins.
Nat Methods. 2005 Dec;2(12):905-9. doi: 10.1038/nmeth819.
8
Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons.
J Neurosci. 2005 Mar 23;25(12):3107-12. doi: 10.1523/JNEUROSCI.0085-05.2005.
9
Imaging protein molecules using FRET and FLIM microscopy.
Curr Opin Biotechnol. 2005 Feb;16(1):19-27. doi: 10.1016/j.copbio.2004.12.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验