Ritt Jason T, Andermann Mark L, Moore Christopher I
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Neuron. 2008 Feb 28;57(4):599-613. doi: 10.1016/j.neuron.2007.12.024.
Peripheral sensory organs provide the first transformation of sensory information, and understanding how their physical embodiment shapes transduction is central to understanding perception. We report the characterization of surface transduction during active sensing in the rodent vibrissa sensory system, a widely used model. Employing high-speed videography, we tracked vibrissae while rats sampled rough and smooth textures. Variation in vibrissa length predicted motion mean frequencies, including for the highest velocity events, indicating that biomechanics, such as vibrissa resonance, shape signals most likely to drive neural activity. Rough surface contact generated large amplitude, high-velocity "stick-slip-ring" events, while smooth surfaces generated smaller and more regular stick-slip oscillations. Both surfaces produced velocities exceeding those applied in reduced preparations, indicating active sensation of surfaces generates more robust drive than previously predicted. These findings demonstrate a key role for embodiment in vibrissal sensing and the importance of input transformations in sensory representation.
外周感觉器官对感觉信息进行首次转换,而了解其物理形态如何塑造转导对于理解感知至关重要。我们报告了在啮齿动物触须感觉系统(一种广泛使用的模型)主动感知过程中表面转导的特征。利用高速摄像技术,我们在大鼠对粗糙和光滑质地进行采样时跟踪触须。触须长度的变化预测了运动平均频率,包括最高速度事件的频率,这表明生物力学,如触须共振,塑造了最有可能驱动神经活动的信号。粗糙表面接触产生大振幅、高速的“粘滑环”事件,而光滑表面产生较小且更规则的粘滑振荡。两种表面产生的速度都超过了在简化标本中施加的速度,表明对表面的主动感知产生的驱动比先前预测的更强劲。这些发现证明了形态在触须感知中的关键作用以及输入转换在感觉表征中的重要性。