Suppr超能文献

[铁铁]氢化酶模型的计算研究:单质子化和双质子化中间体的表征及机理洞察

Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights.

作者信息

Huynh Mioy T, Wang Wenguang, Rauchfuss Thomas B, Hammes-Schiffer Sharon

机构信息

Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

Inorg Chem. 2014 Oct 6;53(19):10301-11. doi: 10.1021/ic5013523. Epub 2014 Sep 10.

Abstract

The [FeFe]-hydrogenase enzymes catalyze hydrogen oxidation and production efficiently with binuclear Fe metal centers. Recently the bioinspired H2-producing model system Fe2(adt)(CO)2(dppv)2 (adt=azadithiolate and dppv=diphosphine) was synthesized and studied experimentally. In this system, the azadithiolate bridge facilitates the formation of a doubly protonated ammonium-hydride species through a proton relay. Herein computational methods are utilized to examine this system in the various oxidation states and protonation states along proposed mechanistic pathways for H2 production. The calculated results agree well with the experimental data for the geometries, CO vibrational stretching frequencies, and reduction potentials. The calculations illustrate that the NH···HFe dihydrogen bonding distance in the doubly protonated species is highly sensitive to the effects of ion-pairing between the ammonium and BF4(-) counterions, which are present in the crystal structure, in that the inclusion of BF4(-) counterions leads to a significantly longer dihydrogen bond. The non-hydride Fe center was found to be the site of reduction for terminal hydride species and unsymmetric bridging hydride species, whereas the reduced symmetric bridging hydride species exhibited spin delocalization between the Fe centers. According to both experimental measurements and theoretical calculations of the relative pKa values, the Fed center of the neutral species is more basic than the amine, and the bridging hydride species is more thermodynamically stable than the terminal hydride species. The calculations implicate a possible pathway for H2 evolution that involves an intermediate with H2 weakly bonded to one Fe, a short H2 distance similar to the molecular bond length, the spin density delocalized over the two Fe centers, and a nearly symmetrically bridged CO ligand. Overall, this study illustrates the mechanistic roles of the ammonium-hydride interaction, flexibility of the bridging CO ligand, and intramolecular electron transfer between the Fe centers in the catalytic cycle. Such insights will assist in the design of more effective bioinspired catalysts for H2 production.

摘要

[铁铁]氢化酶能利用双核铁金属中心高效催化氢气氧化和生成反应。最近,受生物启发合成了产氢模型体系Fe2(adt)(CO)2(dppv)2(adt = 氮杂二硫醇盐,dppv = 二膦)并进行了实验研究。在该体系中,氮杂二硫醇盐桥通过质子中继促进双质子化铵 - 氢化物物种的形成。本文利用计算方法沿着提出的产氢机理途径研究该体系在各种氧化态和质子化态下的情况。计算结果与几何结构、CO振动伸缩频率和还原电位的实验数据吻合良好。计算表明,双质子化物种中NH···HFe双氢键距离对晶体结构中存在的铵离子和BF4(-)抗衡离子之间的离子对效应高度敏感,因为包含BF4(-)抗衡离子会导致双氢键显著变长。发现非氢化物铁中心是末端氢化物物种和不对称桥连氢化物物种的还原位点,而还原后的对称桥连氢化物物种在铁中心之间表现出自旋离域。根据相对pKa值的实验测量和理论计算,中性物种的铁中心比胺更具碱性,桥连氢化物物种比末端氢化物物种在热力学上更稳定。计算暗示了一种可能的氢气析出途径,该途径涉及一个中间体,其中H2与一个铁弱键合,H2距离短,类似于分子键长,自旋密度在两个铁中心上离域,以及一个近乎对称桥连的CO配体。总体而言,本研究阐明了铵 - 氢化物相互作用、桥连CO配体的灵活性以及催化循环中铁中心之间的分子内电子转移的机理作用。这些见解将有助于设计更有效的受生物启发的产氢催化剂。

相似文献

2
Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
Acc Chem Res. 2015 Jul 21;48(7):2107-16. doi: 10.1021/acs.accounts.5b00177. Epub 2015 Jun 16.
4
Ligand versus metal protonation of an iron hydrogenase active site mimic.
Chemistry. 2007;13(25):7075-84. doi: 10.1002/chem.200700019.
5
9
Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase.
J Am Chem Soc. 2017 Jan 11;139(1):83-86. doi: 10.1021/jacs.6b11409. Epub 2016 Dec 21.

引用本文的文献

1
Computational Modeling and Experimental Approaches for Understanding the Mechanisms of [FeFe]-Hydrogenase.
Adv Sci (Weinh). 2025 Jun;12(21):e2408297. doi: 10.1002/advs.202408297. Epub 2025 May 8.
2
Hybrids of [FeFe]- and [NiFe]-Hase Active Site Models.
Organometallics. 2023 Jul 10;42(13):1607-1614. doi: 10.1021/acs.organomet.3c00173. Epub 2023 Jun 16.
3
Electrocatalytic Behavior of Tetrathiafulvalene (TTF) and Extended Tetrathiafulvalene (exTTF) [FeFe] Hydrogenase Mimics.
ACS Org Inorg Au. 2021 Sep 13;2(1):23-33. doi: 10.1021/acsorginorgau.1c00011. eCollection 2022 Feb 2.
4
Linear Scaling Relationships to Predict p's and Reduction Potentials for Bioinspired Hydrogenase Catalysis.
Inorg Chem. 2022 Jan 10;61(1):113-120. doi: 10.1021/acs.inorgchem.1c02429. Epub 2021 Dec 26.
5
6
Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities.
Chem Rev. 2019 Feb 27;119(4):2453-2523. doi: 10.1021/acs.chemrev.8b00361. Epub 2018 Oct 30.
8
Interplay between Terminal and Bridging Diiron Hydrides in Neutral and Oxidized States.
Organometallics. 2017 Jun 12;36(11):2245-2253. doi: 10.1021/acs.organomet.7b00297. Epub 2017 May 18.
9
Direct Observation of an Iron-Bound Terminal Hydride in [FeFe]-Hydrogenase by Nuclear Resonance Vibrational Spectroscopy.
J Am Chem Soc. 2017 Mar 29;139(12):4306-4309. doi: 10.1021/jacs.7b00686. Epub 2017 Mar 20.
10
Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.
Chem Rev. 2016 Aug 10;116(15):8693-749. doi: 10.1021/acs.chemrev.6b00180. Epub 2016 Jun 29.

本文引用的文献

2
Theoretical Design of Molecular Electrocatalysts with Flexible Pendant Amines for Hydrogen Production and Oxidation.
J Phys Chem Lett. 2013 Feb 7;4(3):542-6. doi: 10.1021/jz3020277. Epub 2013 Jan 29.
3
Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.
Angew Chem Int Ed Engl. 2014 May 19;53(21):5300-4. doi: 10.1002/anie.201402090. Epub 2014 Apr 22.
4
Proton-coupled electron transfer in molecular electrocatalysis: theoretical methods and design principles.
Inorg Chem. 2014 Jul 7;53(13):6427-43. doi: 10.1021/ic5002896. Epub 2014 Apr 14.
5
New reactions of terminal hydrides on a diiron dithiolate.
J Am Chem Soc. 2014 Apr 16;136(15):5773-82. doi: 10.1021/ja501366j. Epub 2014 Apr 8.
6
Hydrogenases.
Chem Rev. 2014 Apr 23;114(8):4081-148. doi: 10.1021/cr4005814. Epub 2014 Mar 21.
7
Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic.
Nat Chem Biol. 2013 Oct;9(10):607-609. doi: 10.1038/nchembio.1311. Epub 2013 Aug 11.
8
Biomimetic assembly and activation of [FeFe]-hydrogenases.
Nature. 2013 Jul 4;499(7456):66-69. doi: 10.1038/nature12239. Epub 2013 Jun 26.
10
Isolation of a mixed valence diiron hydride: evidence for a spectator hydride in hydrogen evolution catalysis.
J Am Chem Soc. 2013 Mar 6;135(9):3633-9. doi: 10.1021/ja312458f. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验