Bockamp Ernesto, Sprengel Rolf, Eshkind Leonid, Lehmann Thomas, Braun Jan M, Emmrich Frank, Hengstler Jan G
Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany.
Regen Med. 2008 Mar;3(2):217-35. doi: 10.2217/17460751.3.2.217.
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the 'zoo' of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
目前有许多小鼠模型,为阐明基因功能和重现特定病理状况提供了途径。在很大程度上,通过转基因或基因靶向技术的进展,将临床证据或分析数据成功转化为合适的小鼠模型是可行的。本文首先回顾标准小鼠转基因和传统基因靶向技术,接着将讨论条件性基因表达的基础知识:基于反式激活因子四环素控制反式激活因子(Tta)和反向四环素控制反式激活因子(rtTA)的四环素(tet)-关闭和tet-开启系统,可实现基因表达的下调或诱导;Cre或Flp重组酶介导的修饰,包括切除、倒位、插入和染色体间易位;tet和Cre系统的组合,可实现诱导性基因敲除、报告基因激活或点突变激活;基于将rtTA特异性递送至表达禽逆转录病毒受体的细胞中的禽逆转录病毒系统,可实现细胞类型特异性、诱导性基因表达;他莫昔芬系统是最常用的基于类固醇受体的系统之一,可快速激活感兴趣基因与雌激素受体突变域之间的融合蛋白,从而激活不依赖于转录;以及细胞类型特异性消融技术。白喉毒素受体系统的优势在于它可与Cre重组酶驱动小鼠的“库”相结合。在介绍了基础知识后,我们将转向前沿内容:生成全基因组范围的条件性基因敲除小鼠。为此,正在进行的大型项目采用两种策略:基于捕获载体随机整合到内含子中导致转录本截断的基因捕获,以及代表使用同源重组的定向方法的基因靶向。可以预期,在不久的将来将可获得全基因组范围的此类小鼠。最后,将通过神经退行性疾病、肝脏再生和皮肤伤口愈合的实例来说明条件性表达系统在研究组织再生中基因功能方面的可能性。