Goldwyn Eli E, Hastings Alan
Department of Mathematics, University of California, Davis, United States.
Theor Popul Biol. 2008 May;73(3):395-402. doi: 10.1016/j.tpb.2007.11.012. Epub 2008 Jan 16.
While spatial synchrony of oscillating populations has been observed in many ecological systems, the causes of this phenomenon are still not well understood. The most common explanations have been the Moran effect (synchronous external stochastic influences) and the effect of dispersal among populations. Since ecological systems are typically subject to large spatially varying perturbations which destroy synchrony, a plausible mechanism explaining synchrony must produce rapid convergence to synchrony. We analyze the dynamics through time of the synchronizing effects of dispersal and, consequently, determine whether dispersal can be the mechanism which produces synchrony. Specifically, using methods new to ecology, we analyze a two patch predator-prey model, with identical weak dispersal between the patches. We find that a difference in time scales (i.e. one population has dynamics occurring much faster than the other) between the predator and prey species is the most important requirement for fast convergence to synchrony.
虽然在许多生态系统中都观察到了振荡种群的空间同步现象,但这种现象的成因仍未得到很好的理解。最常见的解释是莫兰效应(同步外部随机影响)和种群间扩散的影响。由于生态系统通常会受到大规模的空间变化扰动,这些扰动会破坏同步性,因此,一种解释同步性的合理机制必须能迅速收敛到同步状态。我们分析了扩散同步效应随时间的动态变化,从而确定扩散是否可能是产生同步性的机制。具体来说,我们使用生态学中的新方法,分析了一个双斑块捕食者 - 猎物模型,斑块之间具有相同的弱扩散。我们发现,捕食者和猎物物种之间的时间尺度差异(即一个种群的动态变化比另一个种群快得多)是快速收敛到同步状态的最重要条件。