Suppr超能文献

基于激发-发射室温磷光数据和多元化学计量技术对油样进行筛选。在分类研究中引入二阶优势。

Screening of oil samples on the basis of excitation-emission room-temperature phosphorescence data and multiway chemometric techniques. Introducing the second-order advantage in a classification study.

作者信息

Arancibia Juan A, Boschetti Carlos E, Olivieri Alejandro C, Escandar Graciela M

机构信息

Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina.

出版信息

Anal Chem. 2008 Apr 15;80(8):2789-98. doi: 10.1021/ac702364n. Epub 2008 Mar 4.

Abstract

Room-temperature phosphorescence excitation-emission matrices and multiway methods have been analyzed as potential tools for screening oil samples, based on full matrix information for polyaromatic hydrocarbons. Crude oils obtained from different sources of similar geographic origin, as well as light and heavy lubricating oils, were analyzed. The room-temperature phosphorescence matrix signals were processed by applying multilayer perceptron artificial neural networks, parallel factor analysis coupled to linear discriminant analysis, discriminant unfolded partial least-squares, and discriminant multidimensional partial least-squares (DN-PLS). The ability of the latter algorithm to classify the investigated oils into four categories is demonstrated. In addition, the combination of DN-PLS with residual bilinearization allows for a proper classification of oils containing unsuspected compounds not present in the training sample set. This second-order advantage concept is applied to a classification study for the first time. The employed approach is fast, avoids the use of laborious chromatographic analysis, and is relevant for oil characterization, identification, and determination of accidental spill sources.

摘要

基于多环芳烃的全矩阵信息,已将室温磷光激发-发射矩阵和多元方法作为筛选油样的潜在工具进行了分析。分析了来自相似地理来源不同产地的原油以及轻质和重质润滑油。通过应用多层感知器人工神经网络、耦合线性判别分析的平行因子分析、判别展开偏最小二乘法和判别多维偏最小二乘法(DN-PLS)对室温磷光矩阵信号进行处理。证明了后一种算法将所研究的油分类为四类的能力。此外,DN-PLS与残差双线性化的结合能够对含有训练样本集中不存在的可疑化合物的油进行正确分类。这种二阶优势概念首次应用于分类研究。所采用的方法快速,避免了使用繁琐的色谱分析,并且与油的表征、识别以及意外泄漏源的确定相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验