Jones Phillip B, Rozkalne Aneta, Meyer-Luehmann Melanie, Spires-Jones Tara L, Makarova Alexandra, Kumar Anand T N, Berezovska Oksana, Bacskai Brian B, Hyman Bradley T
Harvard Medical School, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disorders, 114 16th Street, Charlestown, Massachusetts 02129, USA.
J Biomed Opt. 2008 Jan-Feb;13(1):014008. doi: 10.1117/1.2837169.
The analysis of fluorescence lifetime imaging microscopy (FLIM) data under complex biological conditions can be challenging. Particularly, the presence of short-lived autofluorescent aggregates can confound lifetime measurements in fluorescence energy transfer (FRET) experiments, where it can become confused with the signal from exogenous fluorophores. Here we report two techniques that can be used to discriminate the contribution of autofluorescence from exogenous fluorphores in FLIM. We apply the techniques to transgenic mice that natively express yellow fluorescence protein (YFP) in a subset of cortical neurons and to histological slices of aged human brain tissue, where we study the misfolding of intracellular tau protein in the form of neurofibrillary tangles.
在复杂生物条件下对荧光寿命成像显微镜(FLIM)数据进行分析可能具有挑战性。特别是,短寿命自发荧光聚集体的存在会在荧光能量转移(FRET)实验中混淆寿命测量,在该实验中它可能与外源荧光团的信号相混淆。在此,我们报告了两种可用于区分FLIM中自发荧光与外源荧光团贡献的技术。我们将这些技术应用于在一部分皮质神经元中天然表达黄色荧光蛋白(YFP)的转基因小鼠以及老年人类脑组织的组织切片,在这些组织切片中我们研究以神经原纤维缠结形式存在的细胞内tau蛋白的错误折叠。