Suppr超能文献

时域荧光寿命Förster共振能量转移准确性方面降低的时间采样效应

Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer.

作者信息

Omer Travis, Zhao Lingling, Intes Xavier, Hahn Juergen

机构信息

Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180, United States.

Rensselaer Polytechnic Institute, Departments of Biomedical Engineering and Chemical & Biological Engineering, 110 8th Street, Troy, New York 12180, United States.

出版信息

J Biomed Opt. 2014 Aug;19(8):086023. doi: 10.1117/1.JBO.19.8.086023.

Abstract

Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to yield lifetime maps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions, protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude coefficients of each component of the population of the donor fluorophore (quenched and nonquenched). Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating the model parameters, leading to lengthy acquisition times and significant computational demands. This work investigates the effect of the number and location of time gates on model parameter estimation accuracy. A detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full temporal datasets (90 gates).

摘要

荧光寿命成像(FLIM)旨在量化荧光团的指数衰减率,以生成成像样本上的寿命图。当与福斯特共振能量转移(FRET)相结合时,该技术可用于间接检测纳米尺度上的相互作用,如蛋白质-蛋白质相互作用、蛋白质-DNA相互作用以及蛋白质构象变化。在FLIM-FRET的情况下,荧光强度衰减被拟合为双指数模型,以估计供体荧光团群体(淬灭和未淬灭)各组分的寿命和分数振幅系数。通常采用大量的时间数据点,也称为时间门,来准确估计模型参数,这导致采集时间长且计算需求大。这项工作研究了时间门的数量和位置对模型参数估计准确性的影响。使用FLIM-FRET成像系统的详细模型进行研究,并通过体外和体内实验数据验证模拟结果。在所研究的所有情况下,发现10个等间距的时间门能够以与完整时间数据集(90个门)相似的精度对基于模型的参数进行稳健估计。

相似文献

2
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
PLoS One. 2015 Dec 11;10(12):e0144421. doi: 10.1371/journal.pone.0144421. eCollection 2015.
4
Deconvolution of fluorescence lifetime imaging microscopy by a library of exponentials.
Opt Express. 2015 Sep 7;23(18):23748-67. doi: 10.1364/OE.23.023748.
6
Global analysis of time correlated single photon counting FRET-FLIM data.
Opt Express. 2009 Apr 13;17(8):6493-508. doi: 10.1364/oe.17.006493.
8
Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.
PLoS One. 2013 Aug 5;8(8):e70687. doi: 10.1371/journal.pone.0070687. Print 2013.
10
flatFLIM: enhancing the dynamic range of frequency domain FLIM.
Opt Express. 2012 Aug 27;20(18):20730-41. doi: 10.1364/OE.20.020730.

引用本文的文献

1
Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement.
Methods Mol Biol. 2022;2394:837-856. doi: 10.1007/978-1-0716-1811-0_44.
2
AlliGator: A Phasor Computational Platform for Fast Lifetime Analysis.
Opt Mol Probes Imaging Drug Deliv. 2017 Apr;2017. doi: 10.1364/omp.2017.omtu2d.2.
3
mCerulean3-Based Cameleon Sensor to Explore Mitochondrial Ca Dynamics In Vivo.
iScience. 2019 Jun 28;16:340-355. doi: 10.1016/j.isci.2019.05.031. Epub 2019 May 27.
4
Assessing patterns for compressive fluorescence lifetime imaging.
Opt Lett. 2018 Sep 15;43(18):4370-4373. doi: 10.1364/OL.43.004370.
6
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
PLoS One. 2015 Dec 11;10(12):e0144421. doi: 10.1371/journal.pone.0144421. eCollection 2015.
7
Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation.
Photonics. 2015 Dec;2(4):1027-1042. doi: 10.3390/photonics2041027. Epub 2015 Sep 28.

本文引用的文献

1
FLIM-FRET for Cancer Applications.
Curr Mol Imaging. 2014;3(2):144-161. doi: 10.2174/2211555203666141117221111.
2
Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging.
Biomed Opt Express. 2014 Feb 27;5(3):944-60. doi: 10.1364/BOE.5.000944. eCollection 2014 Mar 1.
3
4
Active wide-field illumination for high-throughput fluorescence lifetime imaging.
Opt Lett. 2013 Oct 1;38(19):3976-9. doi: 10.1364/OL.38.003976.
7
Tumor imaging and interferon-γ-inducible protein-10 gene transfer using a highly efficient transferrin-conjugated liposome system in mice.
Clin Cancer Res. 2013 Aug 1;19(15):4206-17. doi: 10.1158/1078-0432.CCR-12-3451. Epub 2013 Jun 12.
8
High speed multispectral fluorescence lifetime imaging.
Opt Express. 2013 May 20;21(10):11769-82. doi: 10.1364/OE.21.011769.
9
Adaptive wide-field optical tomography.
J Biomed Opt. 2013 Mar;18(3):036006. doi: 10.1117/1.JBO.18.3.036006.
10
Quantitative tomographic imaging of intermolecular FRET in small animals.
Biomed Opt Express. 2012 Dec 1;3(12):3161-75. doi: 10.1364/BOE.3.003161. Epub 2012 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验