Suppr超能文献

一种三维微芯片装置的制造与评估,其中碳微电极分别连接独立流体层中的通道。

Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers.

作者信息

Hulvey Matthew K, Genes Luiza I, Spence Dana M, Martin R Scott

机构信息

Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103, USA.

出版信息

Analyst. 2007 Dec;132(12):1246-53. doi: 10.1039/b711148g.

Abstract

A fabrication method that results in a 3-dimensional fluidic device containing poly(dimethylsiloxane) (PDMS) -embedded microelectrodes that individually address each layer is described. The two electrode-containing layers and the polycarbonate membrane are reversibly sealed together, eliminating the need for plasma oxidation during device assembly, while enabling simultaneous amperometric detection in membrane-separated fluidic channels. The electrodes were characterized using microchip-based flow analysis. It was found that PDMS-embedded electrodes have a limit of detection (400 nM for catechol) that is 5-fold lower than that reported for microchip-based flow analysis with similar electrodes in a hybrid PDMS-glass device. The selectivity of the carbon ink microelectrodes can be tuned by a simplified modification procedure; this was demonstrated by the selective detection of nitric oxide over possible interferents. Finally, the ability to monitor processes occurring in separate layers of a 3-dimensional device was shown by the simultaneous detection of catechol on either side of the polycarbonate membrane. The electrode response in each fluidic channel was found to be linear as a function of concentration and the transport between layers could be controlled by varying the linear velocities of each fluidic channel. The ability to fabricate and operate this type of 3-dimensional device will be useful for the development of cell-based in vivo mimics that involve the transport of molecular messengers and/or pharmaceuticals across layers of immobilized cells.

摘要

本文描述了一种制造方法,该方法可制造出一种三维流体装置,该装置包含嵌入聚二甲基硅氧烷(PDMS)的微电极,这些微电极可单独寻址每一层。含两个电极的层和聚碳酸酯膜可逆地密封在一起,在装置组装过程中无需进行等离子体氧化,同时能够在膜分离的流体通道中进行同步安培检测。使用基于微芯片的流动分析对电极进行了表征。结果发现,嵌入PDMS的电极的检测限(儿茶酚为400 nM)比在混合PDMS-玻璃装置中使用类似电极的基于微芯片的流动分析所报道的检测限低5倍。碳墨微电极的选择性可通过简化的修饰程序进行调节;通过对一氧化氮相对于可能的干扰物的选择性检测证明了这一点。最后,通过在聚碳酸酯膜两侧同时检测儿茶酚,展示了监测三维装置不同层中发生的过程的能力。发现每个流体通道中的电极响应与浓度呈线性关系,并且层间传输可通过改变每个流体通道的线速度来控制。制造和操作这种类型的三维装置的能力将有助于开发基于细胞的体内模拟物,这些模拟物涉及分子信使和/或药物在固定化细胞层之间的运输。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验