Suppr超能文献

通过数据挖掘方法从天然产物混合物中发现活性化合物。

Discovering active compounds from mixture of natural products by data mining approach.

作者信息

Wang Yi, Jin Yecheng, Zhou Chenguang, Qu Haibin, Cheng Yiyu

机构信息

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.

出版信息

Med Biol Eng Comput. 2008 Jun;46(6):605-11. doi: 10.1007/s11517-008-0323-1. Epub 2008 Mar 5.

Abstract

Traditionally, active compounds were discovered from natural products by repeated isolation and bioassays, which can be highly time consuming. Here, we have developed a data mining approach using the casual discovery algorithm to identify active compounds from mixtures by investigating the correlation between their chemical composition and bioactivity in the mixtures. The efficacy of our algorithm was validated by the cytotoxic effect of Panax ginseng extracts on MCF-7 cells and compared with previous reports. It was demonstrated that our method could successfully pick out active compounds from a mixture in the absence of separation processes. It is expected that the presented algorithm can possibly accelerate the process of discovering new drugs.

摘要

传统上,活性化合物是通过反复分离和生物测定从天然产物中发现的,这可能非常耗时。在这里,我们开发了一种数据挖掘方法,使用因果发现算法,通过研究混合物中化学成分与生物活性之间的相关性,从混合物中识别活性化合物。我们算法的有效性通过人参提取物对MCF-7细胞的细胞毒性作用得到验证,并与先前的报告进行了比较。结果表明,我们的方法可以在不进行分离过程的情况下成功地从混合物中筛选出活性化合物。预计所提出的算法可能会加速新药发现的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验