Suppr超能文献

基于离散弗雷歇距离的蛋白质结构-结构比对

Protein structure-structure alignment with discrete Fréchet distance.

作者信息

Jiang Minghui, Xu Ying, Zhu Binhai

机构信息

Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA.

出版信息

J Bioinform Comput Biol. 2008 Feb;6(1):51-64. doi: 10.1142/s0219720008003278.

Abstract

Matching two geometric objects in two-dimensional (2D) and three-dimensional (3D) spaces is a central problem in computer vision, pattern recognition, and protein structure prediction. In particular, the problem of aligning two polygonal chains under translation and rotation to minimize their distance has been studied using various distance measures. It is well known that the Hausdorff distance is useful for matching two point sets, and that the Fréchet distance is a superior measure for matching two polygonal chains. The discrete Fréchet distance closely approximates the (continuous) Fréchet distance, and is a natural measure for the geometric similarity of the folded 3D structures of biomolecules such as proteins. In this paper, we present new algorithms for matching two polygonal chains in two dimensions to minimize their discrete Fréchet distance under translation and rotation, and an effective heuristic for matching two polygonal chains in three dimensions. We also describe our empirical results on the application of the discrete Fréchet distance to protein structure-structure alignment.

摘要

在二维(2D)和三维(3D)空间中匹配两个几何对象是计算机视觉、模式识别和蛋白质结构预测中的核心问题。特别是,使用各种距离度量研究了在平移和旋转下对齐两条多边形链以最小化它们之间距离的问题。众所周知,豪斯多夫距离对于匹配两个点集很有用,而弗雷歇距离是匹配两条多边形链的更优度量。离散弗雷歇距离紧密近似(连续的)弗雷歇距离,并且是蛋白质等生物分子折叠3D结构几何相似性的自然度量。在本文中,我们提出了用于在二维中匹配两条多边形链以在平移和旋转下最小化它们的离散弗雷歇距离的新算法,以及用于在三维中匹配两条多边形链的有效启发式方法。我们还描述了关于离散弗雷歇距离在蛋白质结构-结构比对中的应用的实证结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验