Suppr超能文献

使用液相色谱-质谱联用技术进行定量差异蛋白质组学研究的设计与分析

Design and analysis of quantitative differential proteomics investigations using LC-MS technology.

作者信息

Bukhman Yury V, Dharsee Moyez, Ewing Rob, Chu Peter, Topaloglou Thodoros, Le Bihan Thierry, Goh Theo, Duewel Henry, Stewart Ian I, Wisniewski Jacek R, Ng Nancy F

机构信息

Protana Inc, Toronto, Ontario, Canada.

出版信息

J Bioinform Comput Biol. 2008 Feb;6(1):107-23. doi: 10.1142/s0219720008003321.

Abstract

Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians. Here, we describe a pipeline for the analysis of quantitative LC-MS data. Key components of this pipeline include experimental design (sample pooling, blocking, and randomization) as well as deconvolution and alignment of mass chromatograms to generate a matrix of molecular abundance profiles. An important challenge in LC-MS-based quantitation is to be able to accurately identify and assign abundance measurements to members of protein families. To address this issue, we implement a novel statistical method for inferring the relative abundance of related members of protein families from tryptic peptide intensities. This pipeline has been used to analyze quantitative LC-MS data from multiple biomarker discovery projects. We illustrate our pipeline here with examples from two of these studies, and show that the pipeline constitutes a complete workable framework for LC-MS-based differential quantitation. Supplementary material is available at http://iec01.mie.utoronto.ca/~thodoros/Bukhman/.

摘要

基于液相色谱-质谱联用(LC-MS)的蛋白质组学正日益成为一种重要工具,用于表征各类生物样品在不同条件下的蛋白质丰度。疾病或药物治疗对蛋白质丰度的影响对于生物过程的表征和生物标志物的识别尤为重要。尽管已有先进的仪器可进行高质量测量,也有商业软件可用于处理数据,但该技术和数据的复杂性给生物信息学家和统计学家带来了挑战。在此,我们描述了一个用于分析定量LC-MS数据的流程。该流程的关键组成部分包括实验设计(样品合并、区组化和随机化)以及对质量色谱图进行去卷积和比对,以生成分子丰度谱矩阵。基于LC-MS的定量分析中的一个重要挑战是能够准确识别蛋白质家族成员并为其分配丰度测量值。为解决这一问题,我们实施了一种新颖的统计方法,用于从胰蛋白酶肽段强度推断蛋白质家族相关成员的相对丰度。该流程已用于分析多个生物标志物发现项目的定量LC-MS数据。我们在此用其中两项研究的例子来说明我们的流程,并表明该流程构成了一个完整可行的基于LC-MS的差异定量框架。补充材料可在http://iec01.mie.utoronto.ca/~thodoros/Bukhman/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验