Commichau Fabian M, Gunka Katrin, Landmann Jens J, Stülke Jörg
Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany.
J Bacteriol. 2008 May;190(10):3557-64. doi: 10.1128/JB.00099-08. Epub 2008 Mar 7.
Glutamate is a central metabolite in all organisms since it provides the link between carbon and nitrogen metabolism. In Bacillus subtilis, glutamate is synthesized exclusively by the glutamate synthase, and it can be degraded by the glutamate dehydrogenase. In B. subtilis, the major glutamate dehydrogenase RocG is expressed only in the presence of arginine, and the bacteria are unable to utilize glutamate as the only carbon source. In addition to rocG, a second cryptic gene (gudB) encodes an inactive glutamate dehydrogenase. Mutations in rocG result in the rapid accumulation of gudB1 suppressor mutations that code for an active enzyme. In this work, we analyzed the physiological significance of this constellation of genes and enzymes involved in glutamate metabolism. We found that the weak expression of rocG in the absence of the inducer arginine is limiting for glutamate utilization. Moreover, we addressed the potential ability of the active glutamate dehydrogenases of B. subtilis to synthesize glutamate. Both RocG and GudB1 were unable to catalyze the anabolic reaction, most probably because of their very high K(m) values for ammonium. In contrast, the Escherichia coli glutamate dehydrogenase is able to produce glutamate even in the background of a B. subtilis cell. B. subtilis responds to any mutation that interferes with glutamate metabolism with the rapid accumulation of extragenic or intragenic suppressor mutations, bringing the glutamate supply into balance. Similarly, with the presence of a cryptic gene, the system can flexibly respond to changes in the external glutamate supply by the selection of mutations.
谷氨酸是所有生物体中的一种核心代谢物,因为它提供了碳代谢与氮代谢之间的联系。在枯草芽孢杆菌中,谷氨酸仅由谷氨酸合酶合成,并且可以被谷氨酸脱氢酶降解。在枯草芽孢杆菌中,主要的谷氨酸脱氢酶RocG仅在精氨酸存在时表达,并且该细菌无法将谷氨酸作为唯一的碳源利用。除了rocG之外,第二个隐蔽基因(gudB)编码一种无活性的谷氨酸脱氢酶。rocG中的突变导致gudB1抑制子突变迅速积累,这些突变编码一种活性酶。在这项工作中,我们分析了参与谷氨酸代谢的这一组基因和酶的生理意义。我们发现,在没有诱导剂精氨酸的情况下rocG的弱表达限制了谷氨酸的利用。此外,我们研究了枯草芽孢杆菌活性谷氨酸脱氢酶合成谷氨酸的潜在能力。RocG和GudB1都无法催化合成反应,很可能是因为它们对铵的K(m)值非常高。相比之下,大肠杆菌谷氨酸脱氢酶即使在枯草芽孢杆菌细胞的背景下也能够产生谷氨酸。枯草芽孢杆菌对任何干扰谷氨酸代谢的突变都会迅速积累基因外或基因内抑制子突变做出反应,从而使谷氨酸供应达到平衡。同样,由于存在隐蔽基因,该系统可以通过选择突变灵活地应对外部谷氨酸供应的变化。