Delatour Vincent, Helfer Emmanuèle, Didry Dominique, Lê Kim Hô Diêp, Gaucher Jean-François, Carlier Marie-France, Romet-Lemonne Guillaume
Cytoskeleton Dynamics and Motility, Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
Biophys J. 2008 Jun;94(12):4890-905. doi: 10.1529/biophysj.107.118653. Epub 2008 Mar 7.
Spatially controlled assembly of actin in branched filaments generates cell protrusions or the propulsion of intracellular vesicles and pathogens. The propulsive movement of giant unilamellar vesicles (GUVs) functionalized by N-WASP (full-length or truncated) is reconstituted in a biochemically controlled medium, and analyzed using phase contrast and fluorescence microscopy to elucidate the links between membrane components and the actin cytoskeleton that determine motile behavior. Actin-based propulsion displays a continuous regime or a periodic saltatory regime. The transition between the two regimes is controlled by the concentration of Arp2/3 complex, which branches filaments by interacting with N-WASP at the liposome surface. Saltatory motion is linked to cycles in the distribution of N-WASP at the membrane between a homogeneous and a segregated state. Comparison of the changes in distribution of N-WASP, Arp2/3, and actin during propulsion demonstrates that actin filaments bind to N-WASP, and that these bonds are transitory. This interaction, mediated by Arp2/3, drives N-WASP segregation. VC-fragments of N-WASP, that interact more weakly than N-WASP with the Arp2/3 complex, segregate less than N-WASP at the rear of the GUVs. GUV propulsion is inhibited by the presence of VCA-actin covalent complex, showing that the release of actin from the nucleator is required for movement. The balance between segregation and free diffusion determines whether continuous movement can be sustained. Computed surface distributions of N-WASP, derived from a theoretical description of this segregation-diffusion mechanism, account satisfactorily for the measured density profiles of N-WASP, Arp2/3 complex, and actin.
肌动蛋白在分支丝中的空间控制组装产生细胞突起或细胞内囊泡及病原体的推进。由N-WASP(全长或截短型)功能化的巨型单层囊泡(GUV)的推进运动在生化控制的介质中重建,并使用相差显微镜和荧光显微镜进行分析,以阐明决定运动行为的膜成分与肌动蛋白细胞骨架之间的联系。基于肌动蛋白的推进表现出连续状态或周期性跳跃状态。两种状态之间的转变由Arp2/3复合物的浓度控制,该复合物通过在脂质体表面与N-WASP相互作用使丝分支。跳跃运动与N-WASP在膜上在均匀状态和分离状态之间分布的循环有关。推进过程中N-WASP、Arp2/3和肌动蛋白分布变化的比较表明,肌动蛋白丝与N-WASP结合,并且这些结合是短暂的。这种由Arp2/3介导的相互作用驱动N-WASP分离。N-WASP的VC片段与Arp2/3复合物的相互作用比N-WASP弱,在GUVs后部的分离程度小于N-WASP。VCA-肌动蛋白共价复合物的存在会抑制GUV推进,表明肌动蛋白从成核剂的释放是运动所必需的。分离和自由扩散之间的平衡决定了连续运动是否能够持续。从这种分离-扩散机制的理论描述得出的N-WASP的计算表面分布,令人满意地解释了所测量的N-WASP、Arp2/3复合物和肌动蛋白的密度分布。