Carlier Marie-France, Pernier Julien, Montaville Pierre, Shekhar Shashank, Kühn Sonja
Institut de Biologie Intégrative de la Cellule, CNRS, 91198, Gif-sur Yvette, France,
Cell Mol Life Sci. 2015 Aug;72(16):3051-67. doi: 10.1007/s00018-015-1914-2. Epub 2015 May 7.
Actin cytoskeleton remodeling, which drives changes in cell shape and motility, is orchestrated by a coordinated control of polarized assembly of actin filaments. Signal responsive, membrane-bound protein machineries initiate and regulate polarized growth of actin filaments by mediating transient links with their barbed ends, which elongate from polymerizable actin monomers. The barbed end of an actin filament thus stands out as a hotspot of regulation of filament assembly. It is the target of both soluble and membrane-bound agonists as well as antagonists of filament assembly. Here, we review the molecular mechanisms by which various regulators of actin dynamics bind, synergize or compete at filament barbed ends. Two proteins can compete for the barbed end via a mutually exclusive binding scheme. Alternatively, two regulators acting individually at barbed ends may be bound together transiently to terminal actin subunits at barbed ends, leading to the displacement of one by the other. The kinetics of these reactions is a key in understanding how filament length and membrane-filament linkage are controlled. It is also essential for understanding how force is produced to shape membranes by mechano-sensitive, processive barbed end tracking machineries like formins and by WASP-Arp2/3 branched filament arrays. A combination of biochemical and biophysical approaches, including bulk solution assembly measurements using pyrenyl-actin fluorescence, single filament dynamics, single molecule fluorescence imaging and reconstituted self-organized filament assemblies, have provided mechanistic insight into the role of actin polymerization in motile processes.
肌动蛋白细胞骨架重塑驱动细胞形状和运动性的变化,它由肌动蛋白丝的极化组装的协调控制来精心安排。信号响应性的膜结合蛋白机制通过介导与肌动蛋白丝的刺端的瞬时连接来启动和调节肌动蛋白丝的极化生长,肌动蛋白丝的刺端从可聚合的肌动蛋白单体延伸。因此,肌动蛋白丝的刺端成为丝组装调节的热点。它是丝组装的可溶性和膜结合激动剂以及拮抗剂的靶标。在这里,我们综述了各种肌动蛋白动力学调节剂在丝刺端结合、协同或竞争的分子机制。两种蛋白质可以通过互斥结合模式竞争刺端。或者,在刺端单独作用的两种调节剂可能会短暂地结合到刺端的末端肌动蛋白亚基上,导致其中一种被另一种取代。这些反应的动力学是理解丝长度和膜 - 丝连接如何被控制的关键。这对于理解像formin这样的机械敏感、进行性刺端追踪机制以及WASP - Arp2/3分支丝阵列如何产生力来塑造膜也是必不可少的。生化和生物物理方法的结合,包括使用芘基肌动蛋白荧光的整体溶液组装测量、单丝动力学、单分子荧光成像和重构的自组织丝组装,为肌动蛋白聚合在运动过程中的作用提供了机制性见解。