Quick Christopher M, Venugopal Arun M, Dongaonkar Ranjeet M, Laine Glen A, Stewart Randolph H
Michael E. DeBakey Institute, Texas A&M University, College Station, TX 77843-4466, USA.
Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2144-9. doi: 10.1152/ajpheart.00781.2007. Epub 2008 Mar 7.
To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.
为了将淋巴液回流至颈部的大静脉,必须克服压力梯度进行主动泵血。淋巴管网某一部分的平均淋巴液流动已通过一个经验关系式(P(in) - P(out) = -P(p) + R(L)Q(L))来描述,其中P(in) - P(out)是轴向压力梯度,Q(L)是平均淋巴液流量。R(L)和P(p)分别是表征有效淋巴阻力和泵压的经验参数。这些整体经验参数与淋巴管节段(由瓣膜界定的淋巴管部分)的特性之间的关系一直存在问题。淋巴管节段具有类似血管的结构,但像心室一样周期性收缩;它们的特征在于收缩频率(f)以及舒张末期压力 - 容积关系的斜率[产生弹性的最小值(E(min))]和收缩末期压力 - 容积关系的斜率[产生弹性的最大值(E(max))]。泊肃叶定律提供了压力 - 流量关系与血管基本特性之间的一阶近似。对于有泵功能的淋巴管节段,不存在类似的公式。因此,我们从基本物理原理和已知的淋巴管节段特性推导出了一个预测淋巴管节段流量的代数公式。定量分析表明,淋巴惯性和淋巴液流动阻力可忽略不计,并且淋巴管节段的作用类似于一系列相互连接的心室。对于单个淋巴管节段,P(p) = P(in) (E(max) - E(min))/E(min)且R(L) = E(max)/f。该公式针对一个经过验证的、真实的淋巴管节段数学模型进行了测试,发现是准确的。预测流量在体外测量的流量范围内。因此,本研究提供了一个通用的解决方案,使得能够将淋巴管节段的基本特性与淋巴系统功能联系起来。