Kim Daehyun, Tithof Jeffrey
Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA.
Fluids Barriers CNS. 2024 Dec 19;21(1):104. doi: 10.1186/s12987-024-00605-w.
Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.
We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent in vivo experimental measurements.
Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed in vivo. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure.
This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.
越来越多的证据表明,对于啮齿动物而言,相当一部分脑脊液(CSF)通过穿过筛板进入鼻咽淋巴管而排出,最终到达颈淋巴管(CLV)。这种引流途径的中断与各种神经系统疾病有关。
我们采用集总参数法对脑脊液从筛板到颈淋巴管的引流进行数值模拟。我们的模型将颅内压作为入口压力,将中心静脉血压作为出口压力。该模型纳入了吸收脑脊液的初始淋巴管(模拟鼻腔区域的淋巴管)和收集淋巴管(模拟颈淋巴管),以逆着不利的压力梯度输送脑脊液。为了确定壁刚度和瓣膜特性等未知参数,我们采用蒙特卡洛方法,并根据最近的体内实验测量结果验证我们的模拟。
我们的参数分析揭示了颈淋巴管的物理特征。我们的结果表明,血管壁的刚度和瓣膜的关闭状态对于维持体内观察到的血管大小和体积流量至关重要。我们发现收缩幅度和频率的降低会导致体积流量的减少,并且我们测试了作用于颈淋巴管的不同压力变化的影响。最后,我们提供证据表明初始淋巴管的分支可能偏离默里定律,以降低对颅内压升高的敏感性。
这是第一项关于脑脊液通过颈淋巴管引流的数值研究。我们全面的参数分析为颈淋巴管未来的数值建模提供了指导。这项研究还为理解脑脊液引流的生理学提供了基础,有助于指导未来旨在确定颈淋巴管运输减少的因果机制和增强流量的潜在治疗方法的实验研究。