Suppr超能文献

PET试验中受体占有率的贝叶斯层次模型

Bayesian hierarchical modeling of receptor occupancy in PET trials.

作者信息

Vandenhende F, Renard D, Nie Y, Kumar A, Miller J, Tauscher J, Witcher J, Zhou Y, Wong D F

机构信息

Global Statistics, Lilly Research Laboratories, Mont-Saint-Guibert, Belgium.

出版信息

J Biopharm Stat. 2008;18(2):256-72. doi: 10.1080/10543400701697158.

Abstract

Receptor occupancy (RO) PET is a non-invasive way to determine drug on target. Given the complexity of procedures, long acquisition times, and high cost, ligand displacement imaging trials often have a limited size and produce sparse RO results over the time course of the blocking drug. To take the best advantage of the available data, we propose a Bayesian hierarchical model to analyze RO as a function of the displacing drug. The model has three components: the first estimates RO using brain regional time-radioactivity concentrations, the second shapes the pharmacokinetic profile of the blocking drug, and the last relates PK to RO. Compared to standard 2-steps RO estimation methods, our Bayesian approach quantifies the variability of the individual RO measures. The model has also useful prediction capabilities: to quantify brain RO for dosage regimens of the drug that were not tested in the experiment. This permits the optimal dose selection of neuroscience drugs at a limited cost. We illustrate the method in the prediction of RO after multiple dosing from a single-dose trial.

摘要

受体占有率(RO)正电子发射断层扫描(PET)是一种确定药物靶点作用情况的非侵入性方法。鉴于程序复杂、采集时间长且成本高,配体置换成像试验的规模往往有限,并且在阻断药物的时间进程中会产生稀疏的RO结果。为了充分利用现有数据,我们提出了一种贝叶斯分层模型,将RO分析为置换药物的函数。该模型有三个组成部分:第一部分使用脑区时间-放射性浓度估计RO,第二部分塑造阻断药物的药代动力学特征,最后一部分将药代动力学与RO联系起来。与标准的两步RO估计方法相比,我们的贝叶斯方法量化了个体RO测量值的变异性。该模型还具有有用的预测能力:可量化实验中未测试的药物给药方案的脑RO。这使得能够以有限的成本进行神经科学药物的最佳剂量选择。我们通过单剂量试验预测多次给药后的RO来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验