Suppr超能文献

神经影像学中的经典推理与贝叶斯推理:应用

Classical and Bayesian inference in neuroimaging: applications.

作者信息

Friston K J, Glaser D E, Henson R N A, Kiebel S, Phillips C, Ashburner J

机构信息

The Wellcome Department of Cognitive Neurology and The Institute of Cognitive Neuroscience, University College London, Queen Square, London, WC1N 3BG, United Kingdom.

出版信息

Neuroimage. 2002 Jun;16(2):484-512. doi: 10.1006/nimg.2002.1091.

Abstract

In Friston et al. ((2002) Neuroimage 16: 465-483) we introduced empirical Bayes as a potentially useful way to estimate and make inferences about effects in hierarchical models. In this paper we present a series of models that exemplify the diversity of problems that can be addressed within this framework. In hierarchical linear observation models, both classical and empirical Bayesian approaches can be framed in terms of covariance component estimation (e.g., variance partitioning). To illustrate the use of the expectation-maximization (EM) algorithm in covariance component estimation we focus first on two important problems in fMRI: nonsphericity induced by (i) serial or temporal correlations among errors and (ii) variance components caused by the hierarchical nature of multisubject studies. In hierarchical observation models, variance components at higher levels can be used as constraints on the parameter estimates of lower levels. This enables the use of parametric empirical Bayesian (PEB) estimators, as distinct from classical maximum likelihood (ML) estimates. We develop this distinction to address: (i) The difference between response estimates based on ML and the conditional means from a Bayesian approach and the implications for estimates of intersubject variability. (ii) The relationship between fixed- and random-effect analyses. (iii) The specificity and sensitivity of Bayesian inference and, finally, (iv) the relative importance of the number of scans and subjects. The forgoing is concerned with within- and between-subject variability in multisubject hierarchical fMRI studies. In the second half of this paper we turn to Bayesian inference at the first (within-voxel) level, using PET data to show how priors can be derived from the (between-voxel) distribution of activations over the brain. This application uses exactly the same ideas and formalism but, in this instance, the second level is provided by observations over voxels as opposed to subjects. The ensuing posterior probability maps (PPMs) have enhanced anatomical precision and greater face validity, in relation to underlying anatomy. Furthermore, in comparison to conventional SPMs they are not confounded by the multiple comparison problem that, in a classical context, dictates high thresholds and low sensitivity. We conclude with some general comments on Bayesian approaches to image analysis and on some unresolved issues.

摘要

在弗里斯顿等人((2002年)《神经图像》16:465 - 483)的研究中,我们引入了经验贝叶斯方法,将其作为一种在层次模型中估计效应并进行推断的潜在有用方法。在本文中,我们展示了一系列模型,这些模型例证了在此框架内可以解决的各种问题。在层次线性观测模型中,经典贝叶斯方法和经验贝叶斯方法都可以用协方差分量估计(例如方差分解)来表述。为了说明期望最大化(EM)算法在协方差分量估计中的应用,我们首先关注功能磁共振成像(fMRI)中的两个重要问题:(i)由误差之间的序列或时间相关性引起的非球形性,以及(ii)多主体研究的层次性质导致的方差分量。在层次观测模型中,较高层次的方差分量可以用作较低层次参数估计的约束条件。这使得可以使用参数化经验贝叶斯(PEB)估计器,这与经典最大似然(ML)估计不同。我们阐述这种差异以解决:(i)基于ML的响应估计与贝叶斯方法的条件均值之间的差异以及对主体间变异性估计的影响。(ii)固定效应分析和随机效应分析之间的关系。(iii)贝叶斯推断的特异性和敏感性,最后,(iv)扫描次数和主体数量的相对重要性。上述内容涉及多主体层次fMRI研究中的主体内和主体间变异性。在本文的后半部分,我们转向第一(体素内)水平的贝叶斯推断,使用正电子发射断层扫描(PET)数据展示如何从大脑中激活的(体素间)分布推导先验。此应用使用的是完全相同的思想和形式体系,但在这种情况下,第二层次是由体素上的观测提供的,而不是主体。由此产生的后验概率图(PPM)相对于基础解剖结构具有更高的解剖精度和更高的表面效度。此外,与传统的统计参数映射(SPM)相比,它们不会受到多重比较问题的干扰,在经典情况下,多重比较问题要求高阈值和低敏感性。我们最后对贝叶斯图像分析方法以及一些未解决的问题进行了一般性评论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验